A nonsmooth Newton solver for capturing exact Coulomb friction in fiber assemblies

We focus on the challenging problem of simulating thin elastic rods in contact, in the presence of friction. Most previous approaches in computer graphics rely on a linear complementarity formulation for handling contact in a stable way, and approximate Coulombs's friction law for making the problem tractable. In contrast, following the seminal work by Alart and Curnier in contact mechanics, we simultaneously model contact and exact Coulomb friction as a zero finding problem of a nonsmooth function. A semi-implicit time-stepping scheme is then employed to discretize the dynamics of rods constrained by frictional contact: this leads to a set of linear equations subject to an equality constraint involving a nondifferentiable function. To solve this one-step problem we introduce a simple and practical nonsmooth Newton algorithm which proves to be reasonably efficient and robust for systems that are not overconstrained. We show that our method is able to finely capture the subtle effects that occur when thin elastic rods with various geometries enter into contact, such as stick-slip instabilities in free configurations, entangling curls, resting contacts in braid-like structures, or the formation of tight knots under large constraints. Our method can be viewed as a first step towards the accurate modeling of dynamic fibrous materials.

[1]  Matthias Teschner,et al.  An Adaptive Contact Model for the Robust Simulation of Knots , 2008, Comput. Graph. Forum.

[2]  Markus H. Gross,et al.  Optimized Spatial Hashing for Collision Detection of Deformable Objects , 2003, VMV.

[3]  Matthias Teschner,et al.  Non-iterative Computation of Contact Forces for Deformable Objects , 2007, J. WSCG.

[4]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[5]  Eitan Grinspun,et al.  Discrete elastic rods , 2008, ACM Trans. Graph..

[6]  Vincent Acary,et al.  Numerical Methods for Nonsmooth Dynamical Systems: Applications in Mechanics and Electronics , 2008 .

[7]  Wayne E. Carlson,et al.  Simulating the structure and dynamics of human hair: Modelling, rendering and animation , 1991, Comput. Animat. Virtual Worlds.

[8]  Eftychios Sifakis,et al.  To appear in the ACM SIGGRAPH conference proceedings Detail Preserving Continuum Simulation of Straight Hair , 2009 .

[9]  J. Spillmann,et al.  CoRdE: Cosserat rod elements for the dynamic simulation of one-dimensional elastic objects , 2007, SCA '07.

[10]  D. Stewart,et al.  AN IMPLICIT TIME-STEPPING SCHEME FOR RIGID BODY DYNAMICS WITH INELASTIC COLLISIONS AND COULOMB FRICTION , 1996 .

[11]  Matthias Müller,et al.  Position based dynamics , 2007, J. Vis. Commun. Image Represent..

[12]  Dinesh K. Pai,et al.  Fast frictional dynamics for rigid bodies , 2005, ACM Trans. Graph..

[13]  DuriezChristian,et al.  Realistic Haptic Rendering of Interacting Deformable Objects in Virtual Environments , 2006 .

[14]  Marie-Paule Cani,et al.  A layered wisp model for simulating interactions inside long hair , 2001 .

[15]  Damien Durville,et al.  Modelling of contact-friction interactions in entangled fibrous materials , 2004 .

[16]  David Baraff,et al.  Analytical methods for dynamic simulation of non-penetrating rigid bodies , 1989, SIGGRAPH.

[17]  Abderrahmane Kheddar,et al.  Fast Continuous Collision Detection between Rigid Bodies , 2002, Comput. Graph. Forum.

[18]  David E. Stewart,et al.  Rigid-Body Dynamics with Friction and Impact , 2000, SIAM Rev..

[19]  B. E. Eckbo,et al.  Appendix , 1826, Epilepsy Research.

[20]  Andrew P. Witkin,et al.  Large steps in cloth simulation , 1998, SIGGRAPH.

[21]  Nadia Magnenat-Thalmann,et al.  Modeling Dynamic Hair as a Continuum , 2001, Comput. Graph. Forum.

[22]  David Harmon,et al.  Asynchronous contact mechanics , 2009, SIGGRAPH 2009.

[23]  M. Marques Differential Inclusions in Nonsmooth Mechanical Problems , 1993 .

[24]  Jernej Barbic,et al.  Eurographics/ Acm Siggraph Symposium on Computer Animation (2007) Flipping with Physics: Motion Editing for Acrobatics , 2022 .

[25]  M. Marques,et al.  Differential Inclusions in Nonsmooth Mechanical Problems: Shocks and Dry Friction , 1993 .

[26]  Andrew Selle,et al.  To appear in the ACM SIGGRAPH conference proceedings A Mass Spring Model for Hair Simulation , 2008 .

[27]  P. Alart,et al.  A mixed formulation for frictional contact problems prone to Newton like solution methods , 1991 .

[28]  Dinesh K. Pai,et al.  Staggered projections for frictional contact in multibody systems , 2008, SIGGRAPH Asia '08.

[29]  Kenny Erleben,et al.  Velocity-based shock propagation for multibody dynamics animation , 2007, TOGS.

[30]  James F. Blinn Ten More Unsolved Problems in Computer Graphics , 1998, IEEE Computer Graphics and Applications.

[31]  C. Lemaréchal,et al.  A formulation of the linear discrete Coulomb friction problem via convex optimization , 2011 .

[32]  Eitan Grinspun,et al.  Asynchronous contact mechanics , 2009, ACM Trans. Graph..

[33]  Hyeong-Seok Ko,et al.  Simulating complex hair with robust collision handling , 2005, SCA '05.

[34]  Victor J. Milenkovic,et al.  Optimization-based animation , 2001, SIGGRAPH.

[35]  Per Lötstedt Numerical Simulation of Time-Dependent Contact and Friction Problems in Rigid Body Mechanics , 1984 .

[36]  Gabriel Zachmann,et al.  Collision Detection for Deformable Objects , 2004, Comput. Graph. Forum.

[37]  Steve Marschner,et al.  Simulating knitted cloth at the yarn level , 2008, ACM Trans. Graph..

[38]  J. Moreau,et al.  Unilateral Contact and Dry Friction in Finite Freedom Dynamics , 1988 .

[39]  Andrew P. Witkin,et al.  Dynamic simulation of non-penetrating flexible bodies , 1992, SIGGRAPH.

[40]  Ronald Fedkiw,et al.  Robust treatment of collisions, contact and friction for cloth animation , 2002, SIGGRAPH Courses.

[41]  R. Luciano,et al.  Stress-penalty method for unilateral contact problems: mathematical formulation and computational aspects , 1994 .

[42]  P. W. Christensen,et al.  Formulation and comparison of algorithms for frictional contact problems , 1998 .

[43]  Liqun Qi,et al.  A nonsmooth version of Newton's method , 1993, Math. Program..

[44]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[45]  Jane Wilhelms,et al.  Collision Detection and Response for Computer Animation , 1988, SIGGRAPH.

[46]  Markus H. Gross,et al.  Implicit Contact Handling for Deformable Objects , 2009, Comput. Graph. Forum.

[47]  Michel Saint Jean,et al.  The non-smooth contact dynamics method , 1999 .

[48]  Laurent Grisoni,et al.  A Suture Model for Surgical Simulation , 2004, International Symposium on Medical Simulation.

[49]  Marie-Paule Cani,et al.  Super-helices for predicting the dynamics of natural hair , 2006, SIGGRAPH 2006.

[50]  David Baraff,et al.  Fast contact force computation for nonpenetrating rigid bodies , 1994, SIGGRAPH.

[51]  Sunil Hadap,et al.  Oriented Strands-dynamics of stiff multi-body system , 2006 .

[52]  Florence Bertails,et al.  Linear Time Super‐Helices , 2009, Comput. Graph. Forum.

[53]  Christian Duriez,et al.  Realistic haptic rendering of interacting deformable objects in virtual environments , 2008, IEEE Transactions on Visualization and Computer Graphics.

[54]  David Baraff,et al.  Issues in computing contact forces for non-penetrating rigid bodies , 1993, Algorithmica.

[55]  Laurent Grisoni,et al.  Geometrically exact dynamic splines , 2008, Comput. Aided Des..

[56]  Matthias Müller,et al.  Position based dynamics , 2007, J. Vis. Commun. Image Represent..

[57]  John Hart,et al.  ACM Transactions on Graphics , 2004, SIGGRAPH 2004.