Microwave Spectrum of Isobutylene. Dipole Moment, Internal Barrier, Equilibrium Conformation, and Structure

The microwave spectra of isobutylene and isobutylene‐d‐3 have been studied in the region 17–36 kMc. Observed rotational constants (Mc) for isobutylene are a0=9133.32, b0=8381.75, c0=4615.99; for sym‐isobutylene‐d‐3, a0=9132.59, b0=7788.98, c0=4431.05; for asym‐isobutylene‐d‐3, a0=8819.46, b0=7981.08, c0=4469.59. The most likely structure compatible with these data is rc–c=1.507 A, rc=c=1.34 A, rCH(methyl)=1.085 A, rCH(ethylenic)=1.086 A, <Me—C—Me=115.9°, <HCH(methyl)=108°, <HCH(ethylenic)=117.5°. Measurements of the Stark effect show that the dipole moment μ=0.503±0.009 D. Fine structure leads to a barrier height hindering internal rotation of the methyl groups of 2.21 kcal/mole. The equilibrium conformation is C2v with two methyl hydrogens in the plane of the carbon atoms and the CH bonds pointing away from the symmetry axis. It is concluded that although CC single bonds are shortened when adjacent to a double bond, the double bond length is probably not much affected by the presence of an adjacent CH3 g...

[1]  David R. Lide,et al.  Microwave Spectrum, Structure, and Dipole Moment of Propane , 1960 .

[2]  R. J. Myers,et al.  Application of Symmetry Principles to the Rotation‐Internal Torsion Levels of Molecules with Two Equivalent Methyl Groups , 1960 .

[3]  L. Bartell,et al.  Structure of Isobutylene , 1960 .

[4]  J. D. Swalen,et al.  Internal Rotation in Molecules with Two Internal Rotors: Microwave Spectrum of Acetone , 1959 .

[5]  Jerome D. Swalen,et al.  Internal Rotation and Microwave Spectroscopy , 1959 .

[6]  L. Pierce,et al.  Microwave Spectrum, Internal Barrier, Structure, Conformation, and Dipole Moment of Acetyl Fluoride , 1959 .

[7]  L. Bartell,et al.  Molecular Structure of Ethylene , 1959 .

[8]  L. Pierce Internal Rotation in Double Internal Rotor Molecules: The Microwave Spectrum of Dimethyl Silane , 1959 .

[9]  B. Stoicheff,et al.  HIGH RESOLUTION RAMAN SPECTROSCOPY OF GASES: XII. ROTATIONAL SPECTRA OF C2H4 AND C2D4 AND THE STRUCTURE OF THE ETHYLENE MOLECULE , 1959 .

[10]  R. J. Myers,et al.  Microwave Spectrum, Structure, and Internal Rotation of Dimethyl Ether , 1959 .

[11]  L. Pierce,et al.  Microwave spectrum, dipole moment, and internal barrier of 2-fluoropropene☆ , 1959 .

[12]  E. K. Plyler,et al.  The Structure of Ethylene from Infrared Spectra1 , 1958 .

[13]  D. Herschbach,et al.  Microwave Spectrum of CH2DCH : CH2; Equilibrium Conformation of Propylene , 1958 .

[14]  D. E. Mann,et al.  Microwave Spectra of Molecules Exhibiting Internal Rotation. I. Propylene , 1957 .

[15]  C. Lin,et al.  Calculation of Energy Levels for Internal Torsion and Over‐All Rotation. II. CH3CHO Type Molecules; Acetaldehyde Spectra , 1957 .

[16]  D. E. Mann,et al.  Microwave Spectrum and Structure of Sulfuryl Fluoride , 1957 .

[17]  S. A. Marshall,et al.  Microwave Stark Effect Measurement of the Dipole Moment and Polarizability of Carbonyl Sulfide , 1957 .

[18]  K. Pitzer,et al.  Thermodynamic Properties of Ideal Gaseous Methanol , 1955 .

[19]  K. Pitzer,et al.  Heat content, free-energy function, entropy, and heat capacity of ethylene, propylene, and the four butenes to 1,500 degrees-K , 1946 .

[20]  K. Ramaswamy,et al.  The Refractive Index Dispersion and Polarization of Gases , 1936 .