Mass matrices for elastic continua with micro-inertia

[1]  F. Gómez-Silva,et al.  New low-order continuum models for the dynamics of a Timoshenko beam lattice with next-nearest interactions , 2022, Computers & Structures.

[2]  F. Gómez-Silva,et al.  Low-order non-classical continuum models for the improved prediction of an anisotropic membrane lattice’s dynamics , 2022, Thin-Walled Structures.

[3]  F. Gómez-Silva,et al.  Low-order continualization of an anisotropic membrane lattice with next-nearest interactions. Enhanced prediction of its dynamic behaviour , 2022, European Journal of Mechanics - A/Solids.

[4]  S. Faroughi,et al.  Selection of size dependency theory effects on the wave's dispersions of magneto-electro-thermo-elastic nano-beam resting on visco-elastic foundation , 2022, European Journal of Mechanics - A/Solids.

[5]  F. Gómez-Silva,et al.  Novel Enriched Kinetic Energy continuum model for the enhanced prediction of a 1D lattice with next-nearest interactions , 2021, Composite Structures.

[6]  F. Gómez-Silva,et al.  Dynamic analysis and non-standard continualization of a Timoshenko beam lattice , 2021, International Journal of Mechanical Sciences.

[7]  F. Gómez-Silva,et al.  Low order nonstandard continualization of a beam lattice with next-nearest interactions: Enhanced prediction of the dynamic behavior , 2021, Mechanics of Advanced Materials and Structures.

[8]  Cancan Liu,et al.  Dispersion characteristics of guided waves in functionally graded anisotropic micro/nano-plates based on the modified couple stress theory , 2021 .

[9]  M. A. Eltaher,et al.  Dynamics of perforated nanobeams subject to moving mass using the nonlocal strain gradient theory , 2021 .

[10]  G. Zhu,et al.  Facile Fabrication of Flexible Pressure Sensor with Programmable Lattice Structure. , 2021, ACS applied materials & interfaces.

[11]  F. Gómez-Silva,et al.  Analysis of low order non-standard continualization methods for enhanced prediction of the dispersive behaviour of a beam lattice , 2021 .

[12]  B. Akgöz,et al.  Vibration analysis of carbon nanotube‐reinforced composite microbeams , 2021 .

[13]  H. Hwang,et al.  Strain Gradient Elasticity in SrTiO3 Membranes: Bending versus Stretching. , 2020, Nano letters.

[14]  Heng Li,et al.  Coupling effects of surface energy, strain gradient, and inertia gradient on the vibration behavior of small-scale beams , 2020 .

[15]  N. Karathanasopoulos,et al.  Higher-gradient and micro-inertia contributions on the mechanical response of composite beam structures , 2020 .

[16]  J. Fernández-Sáez,et al.  Nonstandard continualization of 1D lattice with next-nearest interactions. Low order ODEs and enhanced prediction of the dispersive behavior , 2020, Mechanics of Advanced Materials and Structures.

[17]  Annette Bäger,et al.  Eigenfrequency maximisation by using irregular lattice structures , 2020 .

[18]  A. Zervos,et al.  Second-grade elasticity revisited , 2019 .

[19]  A. Bacigalupo,et al.  Generalized micropolar continualization of 1D beam lattices , 2018, International Journal of Mechanical Sciences.

[20]  Harm Askes,et al.  Stress gradient, strain gradient and inertia gradient beam theories for the simulation of flexural wave dispersion in carbon nanotubes , 2018, Composites Part B: Engineering.

[21]  Massimo Ruzzene,et al.  Propagation of solitons in a two-dimensional nonlinear square lattice , 2018, International Journal of Non-Linear Mechanics.

[22]  Bo Zhao,et al.  Design and analysis of strut-based lattice structures for vibration isolation , 2017 .

[23]  E. Benvenutti,et al.  Pore size effect in the amount of immobilized enzyme for manufacturing carbon ceramic biosensor , 2017 .

[24]  I. Elishakoff,et al.  Comparison of nonlocal continualization schemes for lattice beams and plates , 2017 .

[25]  Duc Minh Nguyen,et al.  Acoustic wave science realized by metamaterials , 2017, Nano Convergence.

[26]  E. Aifantis,et al.  On the role of micro-inertia in enriched continuum mechanics , 2016, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[27]  I. Elishakoff,et al.  Buckling and vibrations of microstructured rectangular plates considering phenomenological and lattice-based nonlocal continuum models , 2016 .

[28]  Anton Tkachuk,et al.  Direct and sparse construction of consistent inverse mass matrices: general variational formulation and application to selective mass scaling , 2015 .

[29]  C. Wang,et al.  On nonconservativeness of Eringen’s nonlocal elasticity in beam mechanics: correction from a discrete-based approach , 2014, Archive of Applied Mechanics.

[30]  Zhanxuan Zuo,et al.  Optimal Lumped Mass Matrices by Minimization of Modal Errors for Beam Elements , 2014 .

[31]  H. Askes,et al.  Lumped mass finite element implementation of continuum theories with micro‐inertia , 2013 .

[32]  Noël Challamel,et al.  Eringen's small length scale coefficient for buckling of nonlocal Timoshenko beam based on microstructured beam model , 2013 .

[33]  C. Wang,et al.  Development of analytical vibration solutions for microstructured beam model to calibrate length scale coefficient in nonlocal Timoshenko beams , 2013 .

[34]  Dimitrios I. Fotiadis,et al.  Derivation of Mindlin’s first and second strain gradient elastic theory via simple lattice and continuum models , 2012 .

[35]  Andrew Tyas,et al.  Increasing the critical time step: micro-inertia, inertia penalties and mass scaling , 2011 .

[36]  Harm Askes,et al.  Elastic wave dispersion in microstructured membranes , 2010, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[37]  D. Beskos,et al.  Wave dispersion in gradient elastic solids and structures: A unified treatment , 2009 .

[38]  H. Askes,et al.  Element size and time step selection procedures for the numerical analysis of elasticity with higher-order inertia , 2008 .

[39]  A. G. Every,et al.  Determination of the dispersive elastic constants of the cubic crystals Ge, Si, GaAs, and InSb , 2008 .

[40]  J. Awrejcewicz,et al.  Continuous models for 2D discrete media valid for higher-frequency domain , 2008 .

[41]  Andrei V. Metrikine,et al.  An isotropic dynamically consistent gradient elasticity model derived from a 2D lattice , 2006 .

[42]  J. Engelbrecht,et al.  Waves in microstructured materials and dispersion , 2005 .

[43]  J. Awrejcewicz,et al.  Continuous models for 1D discrete media valid for higher-frequency domain , 2005 .

[44]  T. Philippidis,et al.  Experimental study of wave dispersion and attenuation in concrete. , 2005, Ultrasonics.

[45]  Dimitrios G. Aggelis,et al.  Wave dispersion and attenuation in fresh mortar: theoretical predictions vs. experimental results , 2005 .

[46]  C. Sun,et al.  Modeling micro-inertia in heterogeneous materials under dynamic loading , 2002 .

[47]  Andrei V. Metrikine,et al.  One-dimensional dynamically consistent gradient elasticity models derived from a discrete microstructure: Part 1: Generic formulation , 2002 .

[48]  Michael R Wisnom,et al.  Size effects in the testing of fibre-composite materials , 1999 .

[49]  H. Benaroya,et al.  DYNAMICS OF TRANSVERSELY VIBRATING BEAMS USING FOUR ENGINEERING THEORIES , 1999 .

[50]  Ki-Ook Kim,et al.  A REVIEW OF MASS MATRICES FOR EIGENPROBLEMS , 1993 .

[51]  A. Eringen,et al.  On nonlocal elasticity , 1972 .

[52]  J. Krumhansl,et al.  Some Considerations of the Relation between Solid State Physics and Generalized Continuum Mechanics , 1968 .

[53]  A. Eringen,et al.  LINEAR THEORY OF MICROPOLAR ELASTICITY , 1965 .

[54]  J. Krumhansl GENERALIZED CONTINUUM FIELD REPRESENTATIONS FOR LATTICE VIBRATIONS , 1963 .