Dropspots: a picoliter array in a microfluidic device.

We present a simple microfluidic device that uses an array of well-defined chambers to immobilize thousands of femtoliter- to picoliter-scale aqueous drops suspended in inert carrier oil. This device enables timelapse studies of large numbers of individual drops, while simultaneously enabling subsequent drop recovery.

[1]  J. S. Johnson,et al.  Biocompatible surfactants for water-in-fluorocarbon emulsions. , 2008, Lab on a chip.

[2]  Christoph A. Merten,et al.  Drop-based microfluidic devices for encapsulation of single cells. , 2008, Lab on a chip.

[3]  Christoph A. Merten,et al.  Droplet-based microfluidic platforms for the encapsulation and screening of Mammalian cells and multicellular organisms. , 2008, Chemistry & biology.

[4]  Daniel Bratton,et al.  Development of quantitative cell-based enzyme assays in microdroplets. , 2008, Analytical chemistry.

[5]  Clemens F Kaminski,et al.  From microdroplets to microfluidics: selective emulsion separation in microfluidic devices. , 2008, Angewandte Chemie.

[6]  Daniel Bratton,et al.  An Integrated Device for Monitoring Time‐Dependent in vitro Expression From Single Genes in Picolitre Droplets , 2008, Chembiochem : a European journal of chemical biology.

[7]  Jan Genzer,et al.  Journal of Polymer Science, Part B: Polymer Physics: Introduction , 2007 .

[8]  Timothy B. Stockwell,et al.  Nanoliter Reactors Improve Multiple Displacement Amplification of Genomes from Single Cells , 2007, PLoS genetics.

[9]  Christopher P Austin,et al.  High-throughput screening assays for the identification of chemical probes. , 2007, Nature chemical biology.

[10]  Yanwei Jia,et al.  Control and measurement of the phase behavior of aqueous solutions using microfluidics. , 2007, Journal of the American Chemical Society.

[11]  A. deMello,et al.  Quantitative detection of protein expression in single cells using droplet microfluidics. , 2007, Chemical communications.

[12]  Edward R Sumner,et al.  Phenotypic heterogeneity can enhance rare‐cell survival in ‘stress‐sensitive’ yeast populations , 2007, Molecular microbiology.

[13]  Liang Li,et al.  Nanoliter microfluidic hybrid method for simultaneous screening and optimization validated with crystallization of membrane proteins , 2006, Proceedings of the National Academy of Sciences.

[14]  Helen Song,et al.  Reactions in droplets in microfluidic channels. , 2006, Angewandte Chemie.

[15]  Yo Suzuki,et al.  Systematic genetics swims forward elegantly , 2006 .

[16]  Simon V. Avery,et al.  Microbial cell individuality and the underlying sources of heterogeneity , 2006, Nature Reviews Microbiology.

[17]  David A. Weitz,et al.  Electrocoalescence of drops synchronized by size-dependent flow in microfluidic channels , 2006 .

[18]  J. C. Love,et al.  A microengraving method for rapid selection of single cells producing antigen-specific antibodies , 2006, Nature Biotechnology.

[19]  N. Friedman,et al.  Stochastic protein expression in individual cells at the single molecule level , 2006, Nature.

[20]  J. Raser,et al.  Noise in Gene Expression: Origins, Consequences, and Control , 2005, Science.

[21]  刘金明,et al.  IL-13受体α2降低血吸虫病肉芽肿的炎症反应并延长宿主存活时间[英]/Mentink-Kane MM,Cheever AW,Thompson RW,et al//Proc Natl Acad Sci U S A , 2005 .

[22]  D. Chiu,et al.  Selective encapsulation of single cells and subcellular organelles into picoliter- and femtoliter-volume droplets. , 2005, Analytical chemistry.

[23]  S. Leibler,et al.  Bacterial Persistence as a Phenotypic Switch , 2004, Science.

[24]  H. Stone,et al.  Formation of dispersions using “flow focusing” in microchannels , 2003 .

[25]  T. Merkel,et al.  Gas sorption, diffusion, and permeation in poly(dimethylsiloxane) , 2000 .

[26]  G. Whitesides,et al.  Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane). , 1998, Analytical chemistry.

[27]  C. Holding Lab on a chip , 2004, Genome Biology.

[28]  T. S. West Analytical Chemistry , 1969, Nature.