Experimental verification of carpet cloak realized with dielectric cylinders

Based on coordinate transformation, a carpet cloak made from nonmagnectic dielectric cylinders is designed, simulated and tested experimentally in this paper. By manipulating the periodicity of the dielectric cylinders, it is possible to achieve the required dielectric map and therefor the propagate direction of the electromagnetic waves. The scattering reduction effects of the cloak are verified through both simulation and experiment from 7 GHz to 9 GHz with the incidence of an open-end waveguide. The proposed all-dielectric cloak is broad band, low loss and easy to fabricate.

[1]  T. Cui,et al.  A broadband simplified free space cloak realized by nonmagnetic dielectric cylinders , 2010 .

[2]  J. Pendry,et al.  Three-Dimensional Invisibility Cloak at Optical Wavelengths , 2010, Science.

[3]  Qiang Cheng,et al.  Broadband gradient index microwave quasi-optical elements based on non-resonant metamaterials. , 2009, Optics express.

[4]  Tie Jun Cui,et al.  Compact-sized and broadband carpet cloak and free-space cloak. , 2009, Optics express.

[5]  D. Smith,et al.  Optical lens compression via transformation optics. , 2009, Optics express.

[6]  Willie J Padilla,et al.  Guiding light with conformal transformations. , 2009, Optics express.

[7]  J. Lee,et al.  Direct visualization of optical frequency invisibility cloak based on silicon nanorod array. , 2009, Optics express.

[8]  G. Bartal,et al.  An optical cloak made of dielectrics. , 2009, Nature materials.

[9]  M. Lipson,et al.  Silicon nanostructure cloak operating at optical frequencies , 2009, 0904.3508.

[10]  Edward F. Kuester,et al.  Extracting the bulk effective parameters of a metamaterial via the scattering from a single planar array of particles , 2009 .

[11]  Y. Hao,et al.  Ground-plane quasicloaking for free space , 2009, 0902.1692.

[12]  David R. Smith,et al.  Broadband Ground-Plane Cloak , 2009, Science.

[13]  John William Strutt,et al.  Scientific Papers: On the Influence of Obstacles arranged in Rectangular Order upon the Properties of a Medium , 2009 .

[14]  J. Pendry,et al.  Hiding under the carpet: a new strategy for cloaking. , 2008, Physical review letters.

[15]  A. Gopinath,et al.  Simulation of a metamaterial containing cubic high dielectric resonators , 2007 .

[16]  David R. Smith,et al.  Metamaterial Electromagnetic Cloak at Microwave Frequencies , 2006, Science.

[17]  U. Leonhardt Optical Conformal Mapping , 2006, Science.

[18]  David R. Smith,et al.  Controlling Electromagnetic Fields , 2006, Science.

[19]  David R. Smith,et al.  Electromagnetic parameter retrieval from inhomogeneous metamaterials. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  D. Smith,et al.  Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients , 2001, physics/0111203.

[21]  Kenichi Sato,et al.  A plate Luneberg lens with the permittivity distribution controlled by hole density , 2001 .

[22]  C. Walter,et al.  Surface-wave luneberg lens antennas , 1960 .

[23]  L. Lewin The electrical constants of a material loaded with spherical particles , 1947 .

[24]  L. Rayleigh,et al.  LVI. On the influence of obstacles arranged in rectangular order upon the properties of a medium , 1892 .