Using one-class and two-class SVMs for multiclass image annotation

We propose using one-class, two-class, and multiclass SVMs to annotate images for supporting keyword retrieval of images. Providing automatic annotation requires an accurate mapping of images' low-level perceptual features (e.g., color and texture) to some high-level semantic labels (e.g., landscape, architecture, and animals). Much work has been performed in this area; however, there is a lack of ability to assess the quality of annotation. In this paper, we propose a confidence-based dynamic ensemble (CDE), which employs a three-level classification scheme. At the base-level, CDE uses one-class support vector machines (SVMs) to characterize a confidence factor for ascertaining the correctness of an annotation (or a class prediction) made by a binary SVM classifier. The confidence factor is then propagated to the multiclass classifiers at subsequent levels. CDE uses the confidence factor to make dynamic adjustments to its member classifiers so as to improve class-prediction accuracy, to accommodate new semantics, and to assist in the discovery of useful low-level features. Our empirical studies on a large real-world data set demonstrate CDE to be very effective.

[1]  C. K. Chow,et al.  On optimum recognition error and reject tradeoff , 1970, IEEE Trans. Inf. Theory.

[2]  Keinosuke Fukunaga,et al.  Introduction to Statistical Pattern Recognition , 1972 .

[3]  Robert P. W. Duin,et al.  Support vector domain description , 1999, Pattern Recognit. Lett..

[4]  P. Poddar,et al.  Hierarchical ensemble of neural networks , 1993, IEEE International Conference on Neural Networks.

[5]  Beng Chin Ooi,et al.  Giving meanings to WWW images , 2000, MM 2000.

[6]  Thomas G. Dietterich,et al.  Solving Multiclass Learning Problems via Error-Correcting Output Codes , 1994, J. Artif. Intell. Res..

[7]  Keinosuke Fukunaga,et al.  Introduction to statistical pattern recognition (2nd ed.) , 1990 .

[8]  Robert Tibshirani,et al.  Classification by Pairwise Coupling , 1997, NIPS.

[9]  Thomas S. Huang,et al.  One-class SVM for learning in image retrieval , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[10]  Nello Cristianini,et al.  Large Margin DAGs for Multiclass Classification , 1999, NIPS.

[11]  Edward Y. Chang,et al.  Adaptive Feature-Space Conformal Transformation for Imbalanced-Data Learning , 2003, ICML.

[12]  Nikos Karampatziakis,et al.  Probabilistic Outputs for SVMs and Comparisons to Regularized Likelihood Methods , 2007 .

[13]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.

[14]  Wei-Ying Ma,et al.  Improving Image Retrieval with Semantic Classification Using Relevance Feedback , 2002, VDB.

[15]  Mary Czerwinski,et al.  Semi-Automatic Image Annotation , 2001, INTERACT.

[16]  Kohji Fukunaga,et al.  Introduction to Statistical Pattern Recognition-Second Edition , 1990 .

[17]  Shih-Fu Chang,et al.  Semantic knowledge construction from annotated image collections , 2002, Proceedings. IEEE International Conference on Multimedia and Expo.

[18]  Edward Y. Chang,et al.  CBSA: content-based soft annotation for multimodal image retrieval using Bayes point machines , 2003, IEEE Trans. Circuits Syst. Video Technol..

[19]  Pamela R. Lipson,et al.  Context and configuration based scene classification , 1996 .

[20]  Edward Y. Chang,et al.  Confidence-based dynamic ensemble for image annotation and semantics discovery , 2003, MULTIMEDIA '03.

[21]  Robert P. W. Duin,et al.  Data domain description using support vectors , 1999, ESANN.

[22]  Edward Y. Chang,et al.  Support vector machine active learning for image retrieval , 2001, MULTIMEDIA '01.

[23]  Bernhard Schölkopf,et al.  Estimating the Support of a High-Dimensional Distribution , 2001, Neural Computation.

[24]  Wei-Ying Ma,et al.  Learning and inferring a semantic space from user's relevance feedback for image retrieval , 2002, MULTIMEDIA '02.

[25]  Samy Bengio,et al.  SVMTorch: Support Vector Machines for Large-Scale Regression Problems , 2001, J. Mach. Learn. Res..

[26]  Bernhard Schölkopf,et al.  Support Vector Method for Novelty Detection , 1999, NIPS.

[27]  Yoram Singer,et al.  Improved Boosting Algorithms Using Confidence-rated Predictions , 1998, COLT' 98.

[28]  Rohini K. Srihari,et al.  Intelligent Indexing and Semantic Retrieval of Multimodal Documents , 2004, Information Retrieval.

[29]  Eddy Mayoraz,et al.  Improved Pairwise Coupling Classification with Correcting Classifiers , 1998, ECML.

[30]  Edward Y. Chang,et al.  SVM binary classifier ensembles for image classification , 2001, CIKM '01.

[31]  James Ze Wang,et al.  SIMPLIcity: Semantics-Sensitive Integrated Matching for Picture LIbraries , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[32]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[33]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[34]  Yoram Singer,et al.  Reducing Multiclass to Binary: A Unifying Approach for Margin Classifiers , 2000, J. Mach. Learn. Res..

[35]  Edward Y. Chang,et al.  Semantics and feature discovery via confidence-based ensemble , 2005, TOMCCAP.

[36]  Javier Muguerza,et al.  A two-stage classifier for broken and blurred digits in forms , 1998, Proceedings. Fourteenth International Conference on Pattern Recognition (Cat. No.98EX170).

[37]  James Ze Wang,et al.  Automatic Linguistic Indexing of Pictures by a Statistical Modeling Approach , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[38]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.

[39]  Joshua R. Smith,et al.  Multi-stage classi cation of images from features and related text , 1997 .

[40]  James Ze Wang,et al.  Learning-based linguistic indexing of pictures with 2--d MHMMs , 2002, MULTIMEDIA '02.

[41]  Djamel Bouchaffra,et al.  A Methodology for Mapping Scores to Probabilities , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[42]  Jianping Fan,et al.  Multi-level annotation of natural scenes using dominant image components and semantic concepts , 2004, MULTIMEDIA '04.

[43]  Gunter Ritter,et al.  Outliers in statistical pattern recognition and an application to automatic chromosome classification , 1997, Pattern Recognit. Lett..

[44]  Shih-Fu Chang,et al.  Semantic visual templates: linking visual features to semantics , 1998, Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269).