Quantum interference experiments with large molecules

Wave–particle duality is frequently the first topic students encounter in elementary quantum physics. Although this phenomenon has been demonstrated with photons, electrons, neutrons, and atoms, the dual quantum character of the famous double-slit experiment can be best explained with the largest and most classical objects, which are currently the fullerene molecules. The soccer-ball-shaped carbon cages C60 are large, massive, and appealing objects for which it is clear that they must behave like particles under ordinary circumstances. We present the results of a multislit diffraction experiment with such objects to demonstrate their wave nature. The experiment serves as the basis for a discussion of several quantum concepts such as coherence, randomness, complementarity, and wave–particle duality. In particular, the effect of longitudinal (spectral) coherence can be demonstrated by a direct comparison of interferograms obtained with a thermal beam and a velocity selected beam in close analogy to the usua...

[1]  Anton Zeilinger,et al.  Collisional decoherence observed in matter wave interferometry. , 2003, Physical review letters.

[2]  C. Davisson,et al.  The Scattering of Electrons by a Single Crystal of Nickel , 1927, Nature.

[3]  N. Herron,et al.  Production of Perfluoroalkylated Nanospheres from Buckminsterfullerene , 1993, Science.

[4]  W. Ketterle,et al.  Observation of Interference Between Two Bose Condensates , 1997, Science.

[5]  Robert W. Marks,et al.  The Dymaxion world of Buckminster Fuller , 1960 .

[6]  A. Kalinin,et al.  Diffraction of neutral helium clusters: evidence for "magic numbers". , 2004, Physical review letters.

[7]  Pedram Khalili Amiri,et al.  Quantum computers , 2003 .

[8]  K. B. Davis,et al.  Bose-Einstein Condensation in a Gas of Sodium Atoms , 1995, EQEC'96. 1996 European Quantum Electronic Conference.

[9]  Experimental challenges in fullerene interferometry , 2000 .

[10]  C. cohen-tannoudji,et al.  Nobel Lecture: Manipulating atoms with photons , 1998 .

[11]  Claus Jönsson,et al.  Electron Diffraction at Multiple Slits , 1974 .

[12]  S. C. O'brien,et al.  C60: Buckminsterfullerene , 1985, Nature.

[13]  L. Broglie Waves and Quanta , 1923, Nature.

[14]  E. Riis,et al.  Laser cooling and trapping of neutral atoms , 1997 .

[15]  Pierre Meystre,et al.  Atom Optics , 2001 .

[16]  P. Lenard,et al.  Ueber die lichtelektrische Wirkung , 1902 .

[17]  A. Einstein Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt [AdP 17, 132 (1905)] , 2005, Annalen der Physik.

[18]  W. Schöllkopf,et al.  The nondestructive detection of the helium dimer and trimer , 1996 .

[19]  A. Zeilinger,et al.  Concepts for near-field interferometers with large molecules , 2003 .

[20]  E. Campbell,et al.  Optical emission studies of laser desorbed C60 , 1995 .

[21]  Anton Zeilinger,et al.  Wave nature of biomolecules and fluorofullerenes. , 2003, Physical review letters.

[22]  Rubenstein,et al.  Optics and interferometry with Na2 molecules. , 1995, Physical review letters.

[23]  G. C. Hegerfeldt,et al.  Determination of Atom-Surface van der Waals Potentials from Transmission-Grating Diffraction Intensities , 1999 .

[24]  Anton Zeilinger,et al.  Wave–particle duality of C60 molecules , 1999, Nature.

[25]  R. Feynman,et al.  Quantum Mechanics and Path Integrals , 1965 .

[26]  A. Arons,et al.  Einstein's Proposal of the Photon Concept—a Translation of the Annalen der Physik Paper of 1905 , 1965 .

[27]  J. Toennies,et al.  Nondestructive Mass Selection of Small van der Waals Clusters , 1994, Science.

[28]  W. Zurek Decoherence, einselection, and the quantum origins of the classical , 2001, quant-ph/0105127.

[29]  P. H. Cittert,et al.  Die Wahrscheinliche Schwingungsverteilung in Einer von Einer Lichtquelle Direkt Oder Mittels Einer Linse Beleuchteten Ebene , 1934 .

[30]  Caslav Brukner,et al.  Young's experiment and the finiteness of information , 2002, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[31]  S. Chu The manipulation of neutral particles , 1998 .

[32]  C. Bordé,et al.  Molecular interferometry experiments , 1994 .

[33]  Keith,et al.  Diffraction of atoms by a transmission grating. , 1988, Physical review letters.

[34]  O. Stern,et al.  Beugung von Molekularstrahlen , 1930 .

[35]  F. Zernike The concept of degree of coherence and its application to optical problems , 1938 .

[36]  Kohler,et al.  Determination of the bond length and binding energy of the helium dimer by diffraction from a transmission grating , 2000, Physical review letters.

[37]  E. Campbell,et al.  THERMAL RADIATION FROM SMALL PARTICLES , 1998 .

[38]  A. Einstein Concerning an heuristic point of view toward the emission and transformation of light , 1905 .

[39]  E. Schrödinger Die gegenwärtige Situation in der Quantenmechanik , 1935, Naturwissenschaften.

[40]  C. Wieman,et al.  Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor , 1995, Science.

[41]  E. Tiemann,et al.  Realization of a Ramsey-Bordé matter wave interferometer on the molecule , 2000 .

[42]  S. Chu Nobel Lecture: The manipulation of neutral particles , 1998 .

[43]  C. cohen-tannoudji Manipulating atoms with photons , 1998 .

[44]  Dreyer,et al.  Observing the Progressive Decoherence of the "Meter" in a Quantum Measurement. , 1996, Physical review letters.

[45]  Anton Zeilinger,et al.  Decoherence of matter waves by thermal emission of radiation , 2004, Nature.

[46]  Carnal,et al.  Young's double-slit experiment with atoms: A simple atom interferometer. , 1991, Physical review letters.

[47]  T. Hänsch,et al.  Cooling of gases by laser radiation , 1975 .

[48]  W. Phillips Nobel Lecture: Laser cooling and trapping of neutral atoms , 1998 .

[49]  Anton Zeilinger,et al.  Single- and double-slit diffraction of neutrons , 1988 .

[50]  H. Casimir,et al.  The Influence of Retardation on the London-van der Waals Forces , 1948 .