MuFA (Multi-type Fourier Analyzer): A tool for batch generation of MuMax3 input scripts and multi-type Fourier analysis from micromagnetic simulation output data

We present a tool for batch generation of input scripts and multi-type Fourier analysis from simulation results for the micromagnetic software MuMax3. The introduction of graphical user interface and parameter-sweeping functionality strongly speed up the input scripts creation and accelerate model optimization processes consequently. Three types of important Fourier analysis methods are provided for the acquisition of the quantitative frequency compositions, the spin-wave dispersion curve and the spatial distribution of spin-wave powers at different frequencies, respectively. Since the Fourier analysis is accelerated by parallel computations, the time cost is reduced to an acceptable level even in the presentation of tens of gigabytes data. With the MuMax3 and our proposal, a complete micromagnetic simulating tool chain from scripts generation to post analysis has been developed.

[2]  Brian W. Kernighan,et al.  The Go Programming Language , 2015 .

[3]  Luis Torres,et al.  Micromagnetic simulations using Graphics Processing Units , 2012 .

[4]  Kang L. Wang,et al.  Ultra-low switching energy and scaling in electric-field-controlled nanoscale magnetic tunnel junctions with high resistance-area product , 2016 .

[5]  L. Carr,et al.  Spontaneous Exact Spin-Wave Fractals in Magnonic Crystals. , 2018, Physical review letters.

[6]  H. Fangohr,et al.  A Systematic Approach to Multiphysics Extensions of Finite-Element-Based Micromagnetic Simulations: Nmag , 2007, IEEE Transactions on Magnetics.

[7]  V. Šepelák,et al.  Mössbauer spectroscopy and magnetic characteristics of Zn1―xCoxFe2O4 (x= 0―1) nanoparticles , 2011 .

[8]  Jakub Checinski,et al.  MAGE (M-file/Mif Automatic GEnerator): A graphical interface tool for automatic generation of Object Oriented Micromagnetic Framework configuration files and Matlab scripts for results analysis , 2016, Comput. Phys. Commun..

[9]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[10]  A. Adeyeye,et al.  Reprogrammable magnonic band structure of layered permalloy/Cu/permalloy nanowires , 2018, 1804.06217.

[11]  Jan-Markus Schwindt Physik , 1973, Universum ohne Dinge.

[12]  Guido van Rossum,et al.  Python Programming Language , 2007, USENIX Annual Technical Conference.

[13]  Berger Emission of spin waves by a magnetic multilayer traversed by a current. , 1996, Physical review. B, Condensed matter.

[14]  Kang L. Wang,et al.  Magnonic logic circuits , 2010 .

[15]  Dheeraj Kumar,et al.  Numerical calculation of spin wave dispersions in magnetic nanostructures , 2012 .

[16]  Jakub Checinski,et al.  Spatial Spectrum Analyzer (SSA): A tool for calculations of spatial distribution of fast Fourier transform spectrum from Object Oriented Micromagnetic Framework output data , 2015, Comput. Phys. Commun..

[17]  Werner Scholz,et al.  Scalable parallel micromagnetic solvers for magnetic nanostructures , 2003 .

[18]  W. Brown,et al.  Structure and Energy of One‐Dimensional Domain Walls in Ferromagnetic Thin Films , 1965 .

[19]  Wolfgang Porod,et al.  Perspectives of using spin waves for computing and signal processing , 2017 .