Thermal maturity calibration of extremely high-mature pre-Devonian strata: A case study from the lower Cambrian Qiongzhusi formation in the Sichuan Basin, South China

[1]  Wenzhi Zhao,et al.  Hydrothermal activity in ultra-deep strata and its geological significance for deep earth gas exploration: Implications from pyrobitumen in the ediacaran-lower Cambrian Strata, Sichuan Basin , 2022, International Journal of Coal Geology.

[2]  Q. Hu,et al.  Pore structure heterogeneity of Wufeng-Longmaxi shale, Sichuan Basin, China: Evidence from gas physisorption and multifractal geometries , 2022 .

[3]  J. Birdwell,et al.  Compositional evolution of organic matter in Boquillas Shale across a thermal gradient at the single particle level , 2021, International Journal of Coal Geology.

[4]  M. Mastalerz,et al.  SEM petrography of dispersed organic matter in black shales: A review , 2021, Earth-Science Reviews.

[5]  Baoshou Zhang,et al.  Analyzing and Estimating Thermal Conductivity of Sedimentary Rocks from Mineral Composition and Pore Property , 2021 .

[6]  Luofu Liu,et al.  Gas Adsorption Characterization of Pore Structure of Organic-rich Shale: Insights into Contribution of Organic Matter to Shale Pore Network , 2021, Natural Resources Research.

[7]  B. Deng,et al.  Tectonic evolution of the Sichuan Basin, Southwest China , 2021 .

[8]  Ignacio Cameán,et al.  Optical parameters and microstructural properties of Solid Bitumens of high reflectance (Impsonites). Reflections on their use as an indicator of organic maturity , 2020 .

[9]  Jian Sun,et al.  Thermal maturation as revealed by micro-Raman spectroscopy of mineral-organic aggregation (MOA) in marine shales with high and over maturities , 2020, Science China Earth Sciences.

[10]  Qinfu Liu,et al.  Raman spectroscopy of intruded coals from the Illinois Basin: Correlation with rank and estimated alteration temperature , 2020 .

[11]  R. Morga,et al.  Graptolites as fossil geo-thermometers and source material of hydrocarbons: An overview of four decades of progress , 2020 .

[12]  I. Jarvis,et al.  Raman spectroscopy as a tool to determine the thermal maturity of organic matter: Application to sedimentary, metamorphic and structural geology , 2019, Earth-Science Reviews.

[13]  Jianhua Zhao,et al.  Geological controls on the accumulation of shale gas: A case study of the early Cambrian shale in the Upper Yangtze area , 2019, Marine and Petroleum Geology.

[14]  C. Romano,et al.  Comparing optical and Raman spectroscopic investigations of phytoclasts and sporomorphs for thermal maturity assessment: the case study of Hettangian continental facies in the Holy cross Mts. (central Poland) , 2019, Marine and Petroleum Geology.

[15]  David D. Tuschel,et al.  Understanding organic matter heterogeneity and maturation rate by Raman spectroscopy , 2019, International Journal of Coal Geology.

[16]  J. Urai,et al.  Solid bitumen in shales: Petrographic characteristics and implications for reservoir characterization , 2019, International Journal of Coal Geology.

[17]  Liu Yang,et al.  Integrated assessment of thermal maturity of the Upper Ordovician–Lower Silurian Wufeng–Longmaxi shale in Sichuan Basin, China , 2019, Marine and Petroleum Geology.

[18]  J. S. Schmidt,et al.  Comments on empirical conversion of solid bitumen reflectance for thermal maturity evaluation , 2019, International Journal of Coal Geology.

[19]  G. Lash,et al.  Occurrences and origin of reservoir solid bitumen in Sinian Dengying Formation dolomites of the Sichuan Basin, SW China , 2018, International Journal of Coal Geology.

[20]  Brett J. Valentine,et al.  High microscale variability in Raman thermal maturity estimates from shale organic matter , 2018, International Journal of Coal Geology.

[21]  Shengbiao Hu,et al.  Thermal conductivity of sedimentary rocks in the Sichuan basin, Southwest China , 2018, Energy Exploration & Exploitation.

[22]  P. Hackley,et al.  Application of Raman Spectroscopy as Thermal Maturity Probe in Shale Petroleum Systems: Insights from Natural and Artificial Maturation Series , 2018, Energy & Fuels.

[23]  Wen Liu,et al.  Thermal evolution and maturation of Sinian and Cambrian source rocks in the central Sichuan Basin, Southwest China , 2018, Journal of Asian Earth Sciences.

[24]  Wanli Wang,et al.  Optical characteristics of graptolite-bearing sediments and its implication for thermal maturity assessment , 2018, International Journal of Coal Geology.

[25]  M. Mastalerz,et al.  Origin, properties, and implications of solid bitumen in source-rock reservoirs: A review , 2018, International Journal of Coal Geology.

[26]  M. Lewan,et al.  Understanding and distinguishing reflectance measurements of solid bitumen and vitrinite using hydrous pyrolysis: Implications to petroleum assessment , 2018, AAPG Bulletin.

[27]  Mehdi Ostadhassan,et al.  Evaluating Molecular Evolution of Kerogen by Raman Spectroscopy: Correlation with Optical Microscopy and Rock-Eval Pyrolysis , 2018, Energies.

[28]  I. Jarvis,et al.  Assessing low-maturity organic matter in shales using Raman spectroscopy: Effects of sample preparation and operating procedure , 2018 .

[29]  E. Javaux,et al.  Raman microspectroscopy, bitumen reflectance and illite crystallinity scale: comparison of different geothermometry methods on fossiliferous Proterozoic sedimentary basins (DR Congo, Mauritania and Australia) , 2018 .

[30]  Tieguan Wang,et al.  Pyrobitumen in South China: Organic petrology, chemical composition and geological significance , 2018 .

[31]  Zhongsheng Li,et al.  RaMM (Raman maturity method) study of samples used in an interlaboratory exercise on a standard test method for determination of vitrinite reflectance on dispersed organic matter in rocks , 2018 .

[32]  Shuangfang Lu,et al.  Factors Affecting Shale Gas Accumulation in Overmature Shales Case Study from Lower Cambrian Shale in Western Sichuan Basin, South China , 2018 .

[33]  David D. Tuschel,et al.  Raman spectroscopy to study thermal maturity and elastic modulus of kerogen , 2018 .

[34]  Feng Jianhui,et al.  Main factors controlling the enrichment of shale gas in the Wufeng Formation–Longmaxi Formation in the Jiaoshiba area, Fuling shale gas field , 2017 .

[35]  S. Corrado,et al.  Diagenetic thermal evolution of organic matter by Raman spectroscopy , 2017 .

[36]  R. Hinrichs,et al.  Maturity estimation of phytoclasts in strew mounts by micro-Raman spectroscopy , 2017 .

[37]  Khalid L. Alsamadony,et al.  Fast and accurate shale maturity determination by Raman spectroscopy measurement with minimal sample preparation , 2017 .

[38]  H. Mori,et al.  The importance of heating duration for Raman CM thermometry: evidence from contact metamorphism around the Great Whin Sill intrusion, UK , 2017 .

[39]  Lijun Cheng,et al.  Characteristics and origin of in-situ gas desorption of the Cambrian Shuijingtuo Formation shale gas reservoir in the Sichuan Basin, China , 2017 .

[40]  M. Mastalerz,et al.  Comparative optical properties of macerals and statistical evaluation of mis-identification of vitrinite and solid bitumen from early mature Middle Devonian – Lower Mississippian New Albany Shale: Implications for thermal maturity assessment , 2016 .

[41]  B. Zhang,et al.  Effect of lithofacies on gas storage capacity of marine and continental shales in the Sichuan Basin, China , 2016 .

[42]  D. Elsworth,et al.  Sedimentary characteristics of the Lower Cambrian Niutitang shale in the southeast margin of Sichuan Basin, China , 2016 .

[43]  Shengbiao Hu,et al.  Paleogeothermal reconstruction and thermal evolution modeling of source rocks in the Puguang gas field, northeastern Sichuan Basin , 2016, Journal of Earth Science.

[44]  Dianwei Zhang,et al.  Coupled alteration of hydrothermal fluids and thermal sulfate reduction (TSR) in ancient dolomite reservoirs – An example from Sinian Dengying Formation in Sichuan Basin, southern China , 2016 .

[45]  B. Cardott,et al.  Application of organic petrography in North American shale petroleum systems: A review , 2016 .

[46]  Nils Keno Lünsdorf,et al.  Evaluating Raman spectra of carbonaceous matter by automated, iterative curve-fitting , 2016 .

[47]  E. Fisslthaler,et al.  On the discrimination of semi-graphite and graphite by Raman spectroscopy , 2016 .

[48]  Shengbiao Hu,et al.  Geothermal constraints on Emeishan mantle plume magmatism: paleotemperature reconstruction of the Sichuan Basin, SW China , 2016, International Journal of Earth Sciences.

[49]  Yuan Yusong,et al.  Thermal history of the Sichuan Basin, SW China:Evidence from deep boreholes , 2016 .

[50]  N. K. Lünsdorf Raman spectroscopy of dispersed vitrinite — Methodical aspects and correlation with reflectance , 2016 .

[51]  Zhongsheng Li,et al.  A RaMM study of thermal maturity of dispersed organic matter in marine source rocks , 2015 .

[52]  R. Littke,et al.  Optical thermal maturity parameters and organic geochemical alteration at low grade diagenesis to anchimetamorphism: A review , 2015 .

[53]  Jinliang Huang,et al.  Multiple controls on the paleoenvironment of the Early Cambrian marine black shales in the Sichuan Basin, SW China: Geochemical and organic carbon isotopic evidence , 2015 .

[54]  Jinliang Huang,et al.  The characteristics and significance of conventional and unconventional Sinian–Silurian gas systems in the Sichuan Basin, central China , 2015 .

[55]  H. Sanei,et al.  Effects of nanoporosity and surface imperfections on solid bitumen reflectance (BRo) measurements in unconventional reservoirs , 2015 .

[56]  M. Mastalerz,et al.  Standardization of reflectance measurements in dispersed organic matter: Results of an exercise to improve interlaboratory agreement , 2015 .

[57]  M. Abrashev,et al.  Simple procedure for an estimation of the coal rank using micro-Raman spectroscopy , 2014 .

[58]  Yong Qin,et al.  Reservoir evaluation of the Lower Silurian Longmaxi Formation shale gas in the southern Sichuan Basin of China , 2014 .

[59]  Lijuan He Permian to Late Triassic evolution of the Longmen Shan Foreland Basin (Western Sichuan): Model results from both the lithospheric extension and flexure , 2014 .

[60]  Chun Yang,et al.  Geochemistry of the Sinian–Cambrian gas system in the Sichuan Basin, China , 2014 .

[61]  X. Xiao,et al.  Modeling free gas content of the Lower Paleozoic shales in the Weiyuan area of the Sichuan Basin, China , 2014 .

[62]  X. Xiao,et al.  Thermal maturity evaluation from inertinites by Raman spectroscopy: The ‘RaMM’ technique , 2014 .

[63]  C. Zou,et al.  Formation, distribution, resource potential, and discovery of Sinian–Cambrian giant gas field, Sichuan Basin, SW China , 2014 .

[64]  Weihua Lu,et al.  Paleo-geomorphology formed during Tongwan tectonization in Sichuan Basin and its significance for hydrocarbon accumulation , 2014 .

[65]  J. Rouzaud,et al.  Evolution of Barnett Shale organic carbon structure and nanostructure with increasing maturation , 2014 .

[66]  I. Dunkl,et al.  Towards a Higher Comparability of Geothermometric Data obtained by Raman Spectroscopy of Carbonaceous Material. Part I: Evaluation of Biasing Factors , 2014 .

[67]  X. Xiao,et al.  The relationship between micro-Raman spectral parameters and reflectance of solid bitumen , 2014 .

[68]  C. Boreham,et al.  Physical properties of petroleum formed during maturation of Lower Cambrian shale in the upper Yangtze Platform, South China, as inferred from PhaseKinetics modelling , 2013 .

[69]  H. Petersen,et al.  Reflectance measurements of zooclasts and solid bitumen in Lower Paleozoic shales, southern Scandinavia: Correlation to vitrinite reflectance , 2013 .

[70]  X. Xiao,et al.  Sample maturation calculated using Raman spectroscopic parameters for solid organics: Methodology and geological applications , 2013 .

[71]  W. Xie,et al.  Tectonic evolution of the Leshan-Longnüsi paleo-uplift and its control on gas accumulation in the Sinian strata , 2012 .

[72]  Jianzhong Li,et al.  Shale gas generation and potential of the Lower Cambrian Qiongzhusi Formation in the Southern Sichuan Basin, China , 2012 .

[73]  R. Bertrand,et al.  Dispersed organic matter reflectance and thermal maturation in four hydrocarbon exploration wells in the Hudson Bay Basin: regional implications , 2012 .

[74]  L. Qiong Tectono-thermal modeling of the Sichuan Basin since the Late Himalayan period , 2012 .

[75]  R. Littke,et al.  Reflectance of dispersed vitrinite in Palaeozoic rocks with and without cleavage: Implications for burial and thermal history modeling in the Devonian of Rursee area, northern Rhenish Massif, Germany , 2012 .

[76]  Jianguo Wang,et al.  Hydrothermal venting activities in the Early Cambrian, South China: petrological, geochronological and stable isotopic constraints. , 2009 .

[77]  Wei Yang,et al.  Petroleum systems of the oldest gas field in China: Neoproterozoic gas pools in the Weiyuan gas field, Sichuan Basin , 2008 .

[78]  R. Littke,et al.  Polyphase thermal evolution in the Infra-Cambrian Ara Group (South Oman Salt Basin) as deduced by maturity of solid reservoir bitumen , 2007 .

[79]  J. Rouzaud,et al.  Maturation grade of coals as revealed by Raman spectroscopy: progress and problems. , 2005, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[80]  Jean-Noël Rouzaud,et al.  On the characterization of disordered and heterogeneous carbonaceous materials by Raman spectroscopy. , 2003, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[81]  M. Malo,et al.  Source rock analysis, thermal maturation and hydrocarbon generation in Siluro-Devonian rocks of the Gaspé Belt basin, Canada. , 2001 .

[82]  S. Kelemen,et al.  Maturity trends in Raman spectra from kerogen and coal , 2001 .

[83]  D. Houseknecht,et al.  Kerogen maturation and incipient graphitization of hydrocarbon source rocks in the Arkoma Basin, Oklahoma and Arkansas: a combined petrographic and Raman spectrometric study , 1998 .

[84]  T. Gentzis,et al.  Thermal Maturity of Lower Paleozoic Sedimentary Successions in Arctic Canada , 1996 .

[85]  C. E. Barker,et al.  The minimal response to contact metamorphism by the Devonian Buchan Caves Limestone, Buchan Rift, Victoria, Australia , 1995 .

[86]  J. Castaño,et al.  Maturation and bulk chemical properties of a suite of solid hydrocarbons , 1995 .

[87]  C. Riediger Solid bitumen reflectance and Rock-Eval Tmax as maturation indices: an example from the “Nordegg Member”, Western Canada Sedimentary Basin , 1993 .

[88]  R. Bertrand Standardization of solid bitumen reflectance to vitrinite in some paleozoic sequences of Canada , 1993 .

[89]  A. Burnham,et al.  Evaluation of a Simple Model of Vitrinite Reflectance Based on Chemical Kinetics , 1990 .

[90]  R. Bertrand Correlations among the reflectances of vitrinite, chitinozoans, graptolites and scolecodonts , 1990 .

[91]  F. Goodarzi,et al.  Variation of graptolite reflectance with depth of burial , 1989 .

[92]  H. Jacob Classification, structure, genesis and practical importance of natural solid oil bitumen (“migrabitumen”) , 1989 .