Locally Updatable and Locally Decodable Codes

We introduce the notion of locally updatable and locally decodable codes (LULDCs). In addition to having low decode locality, such codes allow us to update a codeword (of a message) to a codeword of a different message, by rewriting just a few symbols. While, intuitively, updatability and error-correction seem to be contrasting goals, we show that for a suitable, yet meaningful, metric (which we call the Prefix Hamming metric), one can construct such codes. Informally, the Prefix Hamming metric allows the adversary to arbitrarily corrupt bits of the codeword subject to one constraint – he does not corrupt more than a δ fraction (for some constant δ) of the t “most-recently changed” bits of the codeword (for all 1 ≤ t ≤ n, where n is the length of the codeword).

[1]  Sergey Yekhanin,et al.  Towards 3-query locally decodable codes of subexponential length , 2008, JACM.

[2]  Yevgeniy Dodis,et al.  Proofs of Retrievability via Hardness Amplification , 2009, IACR Cryptol. ePrint Arch..

[3]  Elaine Shi,et al.  Practical dynamic proofs of retrievability , 2013, CCS.

[4]  Alan Guo,et al.  New affine-invariant codes from lifting , 2012, ITCS '13.

[5]  Klim Efremenko,et al.  3-Query Locally Decodable Codes of Subexponential Length , 2008 .

[6]  Rafail Ostrovsky,et al.  Efficient computation on oblivious RAMs , 1990, STOC '90.

[7]  Shubhangi Saraf,et al.  High-rate codes with sublinear-time decoding , 2014, Electron. Colloquium Comput. Complex..

[8]  Shubhangi Saraf,et al.  Locally Decodable Codes , 2016, Encyclopedia of Algorithms.

[9]  Ernesto Pimentel,et al.  An Efficient Software Protection Scheme , 2001, SEC.

[10]  Daniel A. Spielman,et al.  Linear-time encodable and decodable error-correcting codes , 1995, STOC '95.

[11]  Oded Goldreich,et al.  Towards a theory of software protection and simulation by oblivious RAMs , 1987, STOC.

[12]  Rafail Ostrovsky,et al.  Local correctability of expander codes , 2013, Inf. Comput..

[13]  David Cash,et al.  Dynamic Proofs of Retrievability Via Oblivious RAM , 2013, Journal of Cryptology.

[14]  Rafail Ostrovsky,et al.  Public Key Locally Decodable Codes with Short Keys , 2011, APPROX-RANDOM.

[15]  Rafail Ostrovsky,et al.  On the (in)security of hash-based oblivious RAM and a new balancing scheme , 2012, SODA.

[16]  Ari Juels,et al.  Pors: proofs of retrievability for large files , 2007, CCS '07.

[17]  Rafail Ostrovsky,et al.  Privacy amplification with asymptotically optimal entropy loss , 2014, IACR Cryptol. ePrint Arch..

[18]  Rafail Ostrovsky,et al.  Public-Key Locally-Decodable Codes , 2008, CRYPTO.

[19]  NaorMoni,et al.  The complexity of online memory checking , 2009 .

[20]  Sergey Yekhanin Towards 3-query locally decodable codes of subexponential length , 2007, STOC '07.

[21]  Jonathan Katz,et al.  Proofs of Storage from Homomorphic Identification Protocols , 2009, ASIACRYPT.

[22]  Hovav Shacham,et al.  Compact Proofs of Retrievability , 2008, Journal of Cryptology.

[23]  Ari Juels,et al.  Proofs of retrievability: theory and implementation , 2009, CCSW '09.

[24]  Michael T. Goodrich,et al.  Privacy-Preserving Access of Outsourced Data via Oblivious RAM Simulation , 2010, ICALP.

[25]  Jonathan Katz,et al.  On the efficiency of local decoding procedures for error-correcting codes , 2000, STOC '00.

[26]  Moni Naor,et al.  The complexity of online memory checking , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).

[27]  Rasmus Pagh,et al.  Cuckoo Hashing , 2001, Encyclopedia of Algorithms.

[28]  Benny Pinkas,et al.  Oblivious RAM Revisited , 2010, CRYPTO.

[29]  Rafail Ostrovsky,et al.  Private Locally Decodable Codes , 2007, ICALP.

[30]  Leonard J. Schulman,et al.  Communication on noisy channels: a coding theorem for computation , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.

[31]  Leonard J. Schulman,et al.  Deterministic coding for interactive communication , 1993, STOC.

[32]  Tao Feng,et al.  Query-Efficient Locally Decodable Codes of Subexponential Length , 2010, computational complexity.