Optimal layout of multiple bi-modulus materials

A modified solid isotropic material with penalization (SIMP) method is proposed for solving layout optimization problems of multiple bi-modulus materials in a continuum. In the present algorithm, each bi-modulus material is replaced by two distinct isotropic materials to avoid structural reanalysis for each update of the design domains. To reduce the error in local stiffness due to the material replacement, the modification factor of each finite element is calculated according to the local stress state and the moduli used in the previous structural analysis. Three numerical examples are considered to demonstrate the validity and applicability of the present approach. Numerical results show that the final layout of materials is determined by factors that include the moduli difference of each bi-modulus material and the difference among material moduli.

[1]  Anand Ramani,et al.  A pseudo-sensitivity based discrete-variable approach to structural topology optimization with multiple materials , 2010 .

[2]  Erik Lund,et al.  Material interpolation schemes for unified topology and multi-material optimization , 2011 .

[3]  E. J. Seldin Stress-strain properties of polycrystalline graphites in tension and compression at room temperature , 1966 .

[4]  Ole Sigmund,et al.  Topology optimization of microfluidic mixers , 2009 .

[5]  G. Allaire,et al.  Structural optimization using sensitivity analysis and a level-set method , 2004 .

[6]  Qing Hua Qin,et al.  A New Construction Method for a LightweightSubmerged Radial Gate , 2012 .

[7]  Robert M. Jones,et al.  Stress-strain relations for materials with different moduli in tension and compression , 1977 .

[8]  Xu Guo,et al.  Stress-related topology optimization of continuum structures involving multi-phase materials , 2014 .

[9]  Xu Guo,et al.  Doing Topology Optimization Explicitly and Geometrically—A New Moving Morphable Components Based Framework , 2014 .

[10]  Matteo Bruggi,et al.  A stress–based approach to the optimal design of structures with unilateral behavior of material or supports , 2013 .

[11]  M. Bendsøe,et al.  Topology Optimization: "Theory, Methods, And Applications" , 2011 .

[12]  Hong Guan,et al.  Evolutionary Structural Optimisation Incorporating Tension and Compression Materials , 1999 .

[13]  Matteo Bruggi,et al.  Finite element analysis of no–tension structures as a topology optimization problem , 2014 .

[14]  Magnus Burman,et al.  Tension, compression and shear fatigue of a closed cell polymer foam , 2009 .

[15]  Yi Min Xie,et al.  Evolutionary Topology Optimization of Continuum Structures: Methods and Applications , 2010 .

[16]  Lucas Delaey,et al.  Asymmetry of stress–strain curves under tension and compression for NiTi shape memory alloys , 1998 .

[17]  Zhen Luo,et al.  Shape and topology optimization for electrothermomechanical microactuators using level set methods , 2009, J. Comput. Phys..

[18]  Q. Qin,et al.  Postbuckling analysis of a nonlinear beam with axial functionally graded material , 2014 .

[19]  G. Allaire,et al.  MULTI-PHASE STRUCTURAL OPTIMIZATION VIA A LEVEL SET METHOD ∗, ∗∗ , 2014 .

[20]  Dan M. Frangopol,et al.  Reliability-based design of MEMS mechanisms by topology optimization , 2003 .

[21]  S. Osher,et al.  Level Set Methods for Optimization Problems Involving Geometry and Constraints I. Frequencies of a T , 2001 .

[22]  Yi Min Xie,et al.  Basic Evolutionary Structural Optimization , 1997 .

[23]  Yoshihiro Kanno,et al.  Nonsmooth Mechanics and Convex Optimization , 2011 .

[24]  K. Svanberg The method of moving asymptotes—a new method for structural optimization , 1987 .

[25]  José Pedro Albergaria Amaral Blasques,et al.  Multi-material topology optimization of laminated composite beam cross sections , 2012 .

[26]  O. Sigmund Materials with prescribed constitutive parameters: An inverse homogenization problem , 1994 .

[27]  Ole Sigmund,et al.  Extensions and applications , 2004 .

[28]  Jianqiao Ye,et al.  Thermoelectroelastic solutions for surface bone remodeling under axial and transverse loads. , 2005, Biomaterials.

[29]  Shutian Liu,et al.  Topology optimization of continuum structures with different tensile and compressive properties in bridge layout design , 2011 .

[30]  Shiwei Zhou,et al.  Multimaterial structural topology optimization with a generalized Cahn–Hilliard model of multiphase transition , 2006 .

[31]  F. Cirak,et al.  A variational formulation for finite deformation wrinkling analysis of inelastic membranes , 2009 .

[32]  S. Torquato,et al.  Design of smart composite materials using topology optimization , 1999 .

[33]  Y. Xie,et al.  A simple evolutionary procedure for structural optimization , 1993 .

[34]  Jakob S. Jensen,et al.  Acoustic design by topology optimization , 2008 .

[35]  Z. Kang,et al.  A multi-material level set-based topology and shape optimization method , 2015 .

[36]  Ole Sigmund,et al.  A topology optimization method for design of negative permeability metamaterials , 2010 .

[37]  Osvaldo M. Querin,et al.  Topology optimization of truss-like continua with different material properties in tension and compression , 2010 .

[38]  Wolfgang Achtziger Truss topology optimization including bar properties different for tension and compression , 1996 .

[39]  Analytical formulation of generalized incremental theorems for 2D no-tension solids , 2015 .

[40]  Kun Cai,et al.  A simple approach to find optimal topology of a continuum with tension-only or compression-only material , 2011 .

[41]  Erik Lund,et al.  Discrete material optimization of general composite shell structures , 2005 .

[42]  Seog-Young Han,et al.  Development of a Material Mixing Method Based on Evolutionary Structural Optimization , 2005 .

[43]  H. Ding,et al.  Topology optimization of multi-material for the heat conduction problem based on the level set method , 2010 .

[44]  Zhaoliang Gao,et al.  Topology optimization of continuum structures with bi-modulus materials , 2014 .

[45]  I. Corbi,et al.  Topology optimization for reinforcement of no-tension structures , 2014 .

[46]  George I. N. Rozvany,et al.  Layout Optimization of Structures , 1995 .

[47]  Michael Yu Wang,et al.  Synthesis of shape and topology of multi-material structures with a phase-field method , 2004 .

[48]  Qing Hua Qin,et al.  Topology optimization of bi-modulus structures using the concept of bone remodeling , 2014 .

[49]  Qing-Hua Qin,et al.  Post-buckling solutions of hyper-elastic beam by canonical dual finite element method , 2013, ArXiv.

[50]  M. Zhou,et al.  The COC algorithm, Part II: Topological, geometrical and generalized shape optimization , 1991 .

[51]  H. Ding,et al.  A level set method for topology optimization of heat conduction problem under multiple load cases , 2007 .

[52]  Yang Yang,et al.  Three-Dimensional Force Flow Paths and Reinforcement Design in Concrete via Stress-Dependent Truss-Continuum Topology Optimization , 2015 .

[53]  Xiaoming Wang,et al.  A level set method for structural topology optimization , 2003 .

[54]  Harvey J. Greenberg,et al.  Automatic design of optimal structures , 1964 .

[55]  Cwj Cees Oomens,et al.  The Wrinkling of Thin Membranes: Part I—Theory , 1987 .

[56]  Niels Olhoff,et al.  Topology optimization of continuum structures: A review* , 2001 .

[57]  Zhen Luo,et al.  Robust topology optimisation of bi-modulus structures , 2013, Comput. Aided Des..

[58]  O. Sigmund,et al.  Multiphase composites with extremal bulk modulus , 2000 .

[59]  Mei Yulin,et al.  A level set method for structural topology optimization with multi-constraints and multi-materials , 2004 .

[60]  B. Stimpson,et al.  Measurement of rock elastic moduli in tension and in compression and its practical significance , 1993 .

[61]  Xiaoming Wang,et al.  Color level sets: a multi-phase method for structural topology optimization with multiple materials , 2004 .

[62]  K. Bathe Finite Element Procedures , 1995 .

[63]  Qing-Hua Qin,et al.  Trefftz Finite Element Method and Its Applications , 2005 .

[64]  Q. Qin,et al.  Optimal Mass Distribution Prediction for Human Proximal Femur with Bi-modulus Property. , 2014, Molecular & cellular biomechanics : MCB.

[65]  Qing Hua Qin,et al.  The Trefftz Finite and Boundary Element Method , 2000 .

[66]  Jianqiao Ye,et al.  Thermoelectroelastic solutions for internal bone remodeling under axial and transverse loads , 2004 .

[67]  Xu Guo,et al.  Variational principles and the related bounding theorems for bi-modulus materials , 2014 .

[68]  D. Tortorelli,et al.  A geometry projection method for continuum-based topology optimization with discrete elements , 2015 .