A customizable multi-agent system for distributed data mining

We present a general Multi-Agent System framework for distributed data mining based on a Peer-to-Peer model. Agent protocols are implemented through message-based asynchronous communication. The framework adopts a dynamic load balancing policy that is particularly suitable for irregular search algorithms. A modular design allows a separation of the general-purpose system protocols and software components from the specific data mining algorithm. The experimental evaluation has been carried out on a parallel frequent subgraph mining algorithm, which has shown good scalability performances.

[1]  Srinivasan Parthasarathy,et al.  New Algorithms for Fast Discovery of Association Rules , 1997, KDD.

[2]  Giancarlo Fortino,et al.  Mobile active objects for highly dynamic distributed computing , 2002, Proceedings 16th International Parallel and Distributed Processing Symposium.

[3]  M. Boyd,et al.  New soluble-formazan assay for HIV-1 cytopathic effects: application to high-flux screening of synthetic and natural products for AIDS-antiviral activity. , 1989, Journal of the National Cancer Institute.

[4]  Christian Borgelt,et al.  Mining molecular fragments: finding relevant substructures of molecules , 2002, 2002 IEEE International Conference on Data Mining, 2002. Proceedings..

[5]  Ian Witten,et al.  Data Mining , 2000 .

[6]  George Karypis,et al.  Automated Approaches for Classifying Structures , 2002, BIOKDD.

[7]  Michael G. Madden,et al.  A Multi-Agent System for Context-based Distributed Data Mining , 2003 .

[8]  Jiawei Han,et al.  gSpan: graph-based substructure pattern mining , 2002, 2002 IEEE International Conference on Data Mining, 2002. Proceedings..

[9]  Mohammed J. Zaki Parallel and distributed association mining: a survey , 1999, IEEE Concurr..

[10]  Tomasz Imielinski,et al.  Mining association rules between sets of items in large databases , 1993, SIGMOD Conference.

[11]  Giuseppe Di Fatta,et al.  Distributed Mining of Molecular Fragments , 2004 .

[12]  Ingo Mierswa,et al.  YALE: rapid prototyping for complex data mining tasks , 2006, KDD '06.

[13]  Giancarlo Fortino,et al.  Multi-coordination of mobile agents: a model and a component-based architecture , 2005, SAC '05.

[14]  Michael Luck,et al.  Agent technology: Enabling next generation computing , 2003 .

[15]  Matthias Klusch,et al.  Agent-Based Distributed Data Mining: The KDEC Scheme , 2003, AgentLink.

[16]  Franco Zambonelli,et al.  Developing multiagent systems: The Gaia methodology , 2003, TSEM.

[17]  Blaz Zupan,et al.  Orange: From Experimental Machine Learning to Interactive Data Mining , 2004, PKDD.

[18]  Michael Wooldridge,et al.  Introduction to multiagent systems , 2001 .

[19]  Giuseppe Di Fatta,et al.  Dynamic Load Balancing for the Distributed Mining of Molecular Structures , 2006, IEEE Transactions on Parallel and Distributed Systems.

[20]  Thorsten Meinl,et al.  KNIME: The Konstanz Information Miner , 2007, GfKl.

[21]  Y. Shoham Introduction to Multi-Agent Systems , 2002 .