BEYOND SEM: GENERAL LATENT VARIABLE MODELING

This article gives an overview of statistical analysis with latent variables. Using traditional structural equation modeling as a starting point, it shows how the idea of latent variables captures a wide variety of statistical concepts, including random effects, missing data, sources of variation in hierarchical data, finite mixtures. latent classes, and clusters. These latent variable applications go beyond the traditional latent variable useage in psychometrics with its focus on measurement error and hypothetical constructs measured by multiple indicators. The article argues for the value of integrating statistical and psychometric modeling ideas. Different applications are discussed in a unifying framework that brings together in one general model such different analysis types as factor models, growth curve models, multilevel models, latent class models and discrete-time survival models. Several possible combinations and extensions of these models are made clear due to the unifying framework.

[1]  K. Pearson Contributions to the Mathematical Theory of Evolution. II. Skew Variation in Homogeneous Material , 1895 .

[2]  W. Gibson Three multivariate models: Factor analysis, latent structure analysis, and latent profile analysis , 1959 .

[3]  Paul F. Lazarsfeld,et al.  Latent Structure Analysis. , 1969 .

[4]  D. Hosmer A Comparison of Iterative Maximum Likelihood Estimates of the Parameters of a Mixture of Two Normal Distributions Under Three Different Types of Sample , 1973 .

[5]  L. A. Goodman Exploratory latent structure analysis using both identifiable and unidentifiable models , 1974 .

[6]  A. Goldberger,et al.  Estimation of a Model with Multiple Indicators and Multiple Causes of a Single Latent Variable , 1975 .

[7]  F. Krauss Latent Structure Analysis , 1980 .

[8]  B. Everitt,et al.  Finite Mixture Distributions , 1981 .

[9]  J. Ware,et al.  Random-effects models for longitudinal data. , 1982, Biometrics.

[10]  A. Cohen,et al.  Finite Mixture Distributions , 1982 .

[11]  Ronald G. Stansfield,et al.  Sociological Methodology 1982 , 1983 .

[12]  Leo A. Goodman,et al.  SIMULTANEOUS LATENT STRUCTURE ANALYSIS IN SEVERAL GROUPS , 1985 .

[13]  Bengt Muthen,et al.  Some uses of structural equation modeling in validity studies: Extending IRT to external variables , 1986 .

[14]  R. Jennrich,et al.  Unbalanced repeated-measures models with structured covariance matrices. , 1986, Biometrics.

[15]  D. Rindskopf,et al.  The value of latent class analysis in medical diagnosis. , 1986, Statistics in medicine.

[16]  Jan de Leeuw,et al.  On the relationship between item response theory and factor analysis of discretized variables , 1987 .

[17]  T P Hutchinson,et al.  The value of latent class analysis in medical diagnosis. , 1987, Statistics in medicine.

[18]  H. Goldstein Multilevel Statistical Models , 2006 .

[19]  George B. Macready,et al.  Concomitant-Variable Latent-Class Models , 1988 .

[20]  D. Bates,et al.  Newton-Raphson and EM Algorithms for Linear Mixed-Effects Models for Repeated-Measures Data , 1988 .

[21]  B. Muthén Latent variable modeling in heterogeneous populations , 1989 .

[22]  Diane Lambert,et al.  Generalizing Logistic Regression by Nonparametric Mixing , 1989 .

[23]  Harvey Goldstein,et al.  Balanced versus unbalanced designs for linear structural relations in two‐level data , 1989 .

[24]  J S Uebersax,et al.  Latent class analysis of diagnostic agreement. , 1990, Statistics in medicine.

[25]  Leigh Burstein,et al.  Instructionally Sensitive Psychometrics: Application of a New IRT‐Based Detection Technique to Mathematics Achievement Test Items , 1991 .

[26]  Bengt Muthén,et al.  Multilevel Factor Analysis of Class and Student Achievement Components , 1991 .

[27]  J. Graham,et al.  Modeling transitions in latent stage-sequential processes: a substance use prevention example. , 1991, Journal of consulting and clinical psychology.

[28]  A. Formann Linear Logistic Latent Class Analysis for Polytomous Data , 1992 .

[29]  D. Kandel,et al.  Stages of progression in drug involvement from adolescence to adulthood: further evidence for the gateway theory. , 1992, Journal of studies on alcohol.

[30]  Anthony S. Bryk,et al.  Hierarchical Linear Models: Applications and Data Analysis Methods , 1992 .

[31]  L. Collins,et al.  Latent Class Models for Stage-Sequential Dynamic Latent Variables , 1992 .

[32]  K. Land,et al.  AGE, CRIMINAL CAREERS, AND POPULATION HETEROGENEITY: SPECIFICATION AND ESTIMATION OF A NONPARAMETRIC, MIXED POISSON MODEL* , 1993 .

[33]  Joshua D. Angrist,et al.  Identification of Causal Effects Using Instrumental Variables , 1993 .

[34]  B. Muthén,et al.  Multilevel Covariance Structure Analysis , 1994 .

[35]  An evaluation of the structure of schizophrenia spectrum personality disorders , 1994 .

[36]  R. Bosker Boekbespreking van "A.S. Bryk & S.W. Raudenbusch - Hierarchical linear models: Applications and data analysis methods" : Sage Publications, Newbury Parki, London/New Delhi 1992 , 1995 .

[37]  G. Arminger,et al.  Specification and Estimation of Mean- and Covariance-Structure Models , 1995 .

[38]  G. McLachlan,et al.  The EM algorithm and extensions , 1996 .

[39]  R. Little,et al.  Pattern-mixture models for multivariate incomplete data with covariates. , 1996, Biometrics.

[40]  Peter G. M. van der Heijden,et al.  Estimating the Concomitant-Variable Latent-Class Model With the EM Algorithm , 1996 .

[41]  Michel Wedel,et al.  On Estimating Finite Mixtures of Multivariate Regression and Simultaneous Equation Models , 1996 .

[42]  Yiu-Fai Yung,et al.  Finite mixtures in confirmatory factor-analysis models , 1997 .

[43]  W. DeSarbo,et al.  Finite-Mixture Structural Equation Models for Response-Based Segmentation and Unobserved Heterogeneity , 1997 .

[44]  J. Graham,et al.  Heavy caffeine use and the beginning of the substance use onset process: An illustration of latent transition analysis. , 1997 .

[45]  Bengt Muthen,et al.  10. Latent Variable Modeling of Longitudinal and Multilevel Data , 1997 .

[46]  Scott L. Zeger,et al.  Latent Variable Regression for Multiple Discrete Outcomes , 1997 .

[47]  N M Laird,et al.  Mixture models for the joint distribution of repeated measures and event times. , 1997, Statistics in medicine.

[48]  Bengt Muthén,et al.  General Longitudinal Modeling of Individual Differences in Experimental Designs: A Latent Variable Framework for Analysis and Power Estimation , 1997 .

[49]  David Kaplan,et al.  A didactic example of multilevel structural equation modeling applicable to the study of organizations , 1997 .

[50]  Gerhard Arminger,et al.  Finite Mixtures of Covariance Structure Models with Regressors , 1997 .

[51]  D. Reboussin,et al.  Latent Transition Modeling of Progression of Health-Risk Behavior. , 1998, Multivariate behavioral research.

[52]  Han L. J. van der Maas,et al.  Fitting multivariage normal finite mixtures subject to structural equation modeling , 1998 .

[53]  R. Little,et al.  Statistical Techniques for Analyzing Data from Prevention Trials: Treatment of No-Shows Using Rubin's Causal Model , 1998 .

[54]  D. Hedeker The Natural History of Smoking : A Pattern-Mixture Random-e ® ects Regression Model , 1998 .

[55]  Bengt Muthén,et al.  LONGITUDINAL STUDIES OF ACHIEVEMENT GROWTH USING LATENT VARIABLE MODELING , 1998 .

[56]  Gerhard Arminger,et al.  Mixtures of conditional mean- and covariance-structure models , 1999 .

[57]  Daniel S. Nagin,et al.  Analyzing developmental trajectories: A semiparametric, group-based approach , 1999 .

[58]  R. MacCallum,et al.  Applications of structural equation modeling in psychological research. , 2000, Annual review of psychology.

[59]  Bengt Muthén,et al.  Longitudinal data on families: Growth modeling alternatives , 2000 .

[60]  B. Muthén,et al.  Integrating person-centered and variable-centered analyses: growth mixture modeling with latent trajectory classes. , 2000, Alcoholism, clinical and experimental research.

[61]  Geoffrey J. McLachlan,et al.  Finite Mixture Models , 2019, Annual Review of Statistics and Its Application.

[62]  Stephen W. Raudenbush,et al.  Toward a coherent framework for comparing trajectories of individual change. , 2001 .

[63]  D S Nagin,et al.  Analyzing developmental trajectories of distinct but related behaviors: a group-based method. , 2001, Psychological methods.

[64]  Takahiro Hoshino,et al.  BAYESIAN INFERENCE FOR FINITE MIXTURES IN CONFIRMATORY FACTOR ANALYSIS , 2001 .

[65]  G. A. Marcoulides,et al.  New developments and techniques in structural equation modeling , 2001 .

[66]  Bengt Muthén,et al.  Modeling of Intervention Effects With Noncompliance: A Latent Variable Approach for Randomized Trials , 2001 .

[67]  S G Baker,et al.  Compliance Subsampling Designs for Comparative Research: Estimation and Optimal Planning , 2001, Biometrics.

[68]  Bengt Muthén,et al.  Second-generation structural equation modeling with a combination of categorical and continuous latent variables: New opportunities for latent class–latent growth modeling. , 2001 .

[69]  Linda M. Collins,et al.  New methods for the analysis of change , 2001 .

[70]  Ronald H. Heck,et al.  Multilevel Modeling With SEM , 2001 .

[71]  Bengt O. Muth Two-Part Growth Mixture Modeling , 2001 .

[72]  B. Muthén Latent Variable Mixture Modeling , 2001 .

[73]  Alan C. Acock,et al.  Latent Growth Modeling of Longitudinal Data: A Finite Growth Mixture Modeling Approach , 2001 .

[74]  K. Land Introduction to the Special Issue on Finite Mixture Models , 2001 .

[75]  Stan Lipovetsky,et al.  Latent Variable Models and Factor Analysis , 2001, Technometrics.

[76]  Bengt Muthén,et al.  Analysis of reading skills development from kindergarten through first grade: An application of growth mixture modeling to sequential processes , 2002 .

[77]  Booil Jo,et al.  Estimation of Intervention Effects with Noncompliance: Alternative Model Specifications , 2002 .

[78]  Booil Jo,et al.  Model misspecification sensitivity analysis in estimating causal effects of interventions with non‐compliance , 2002, Statistics in medicine.

[79]  Booil Jo,et al.  Statistical power in randomized intervention studies with noncompliance. , 2002, Psychological methods.

[80]  Katherine E. Masyn,et al.  General growth mixture modeling for randomized preventive interventions. , 2001, Biostatistics.

[81]  Keith F. Widaman,et al.  New Methods for the Analysis of Change , 2003 .

[82]  J. Vermunt Latent Class Models , 2004 .