A Practical Approach to PIV Uncertainty Analysis

While PIV is an established experimental technique for determining a velocity field, quantifying the uncertainty related with this method remains a challenging task. The purpose of the current work is to provide a procedure for estimating the uncertainty associated with time-averaged two-dimensional flow field measurements obtained by means of PIV. Four sources of uncertainty are assessed: equipment, particle lag, sampling size, and processing algorithm. An example uncertainty analysis is conducted for a transverse sonic jet injected into a supersonic crossflow. This flow was selected due to its wide range of flow field phenomena (bow shock, Mach disk, barrel shock, shear layers, boundary layers, etc.). However, the analysis is not specific to the example flow field and may be generally applied to any mean velocity field. In more completely assessing the uncertainty of PIV in measuring a complicated flow field, it is proposed that tools can be developed to estimate the uncertainty throughout the image instead of just giving a single value.

[1]  W. M. Humphreys,et al.  Measurement of separating flow structures using a multiple-camera DPIV system , 2001, ICIASF 2001 Record, 19th International Congress on Instrumentation in Aerospace Simulation Facilities (Cat. No.01CH37215).

[2]  L. Lourenço Particle Image Velocimetry , 1989 .

[3]  Ronald Adrian Uses, analysis and interpretation of PIV data , 1999 .

[4]  Dacheng Li,et al.  Quantification of the bias error induced by velocity gradients , 2008 .

[5]  M. Alkislar,et al.  Supersonic Cavity Flows and Their Control , 2006 .

[6]  Markus Raffel,et al.  Particle Image Velocimetry: A Practical Guide , 2002 .

[7]  J. Nogueira,et al.  Local field correction PIV: on the increase of accuracy of digital PIV systems , 1999 .

[8]  Partial Image Error (PIE) in Digital Particle Image Velocimetry (DPIV) , 2008 .

[9]  Tommaso Astarita,et al.  Analysis of velocity interpolation schemes for image deformation methods in PIV , 2008 .

[10]  S. Beresh The Influence of Velocity Gradients on PIV Measurements of Turbulence Statistics: A Preliminary Study. , 2008 .

[11]  F. Di Felice,et al.  Windowing, re-shaping and re-orientation interrogation windows in particle image velocimetry for the investigation of shear flows , 2002 .

[12]  F. Scarano Iterative image deformation methods in PIV , 2002 .

[13]  R. Adrian Twenty years of particle image velocimetry , 2005 .

[14]  Richard D. Keane,et al.  Theory of cross-correlation analysis of PIV images , 1992 .

[15]  Efstathios E. Michaelides,et al.  Effect of the history term on the motion of rigid spheres in a viscous fluid , 1994 .

[16]  L. Lourenco,et al.  On the accuracy of velocity and vorticity measurements with PIV , 1995 .

[17]  J. Westerweel,et al.  The effect of a discrete window offset on the accuracy of cross-correlation analysis of digital PIV recordings , 1997 .

[18]  J. P. Holman,et al.  Experimental methods for engineers , 1971 .

[19]  Dawn Iacobucci,et al.  Analysis of Experimental Data , 1994 .

[20]  M. Gharib,et al.  On errors of digital particle image velocimetry , 1997 .

[21]  Joseph Katz,et al.  Five techniques for increasing the speed and accuracy of PIV interrogation , 2001 .

[22]  J. Westerweel Fundamentals of digital particle image velocimetry , 1997 .

[23]  Robert P. Lucht,et al.  Mixing of a Sonic Transverse Jet Injected into a Supersonic Flow , 2000 .

[24]  K. Christensen Experimental investigation of acceleration and velocity fields in turbulent channel flow , 2001 .

[25]  Yann Guezennec,et al.  Statistical investigation of errors in particle image velocimetry , 1990, Other Conferences.

[26]  M. R. Gruber,et al.  Mixing and Penetration Studies of Sonic Jets in a Mach 2 Freestream , 1995 .

[27]  Toshio Kobayashi,et al.  Evaluation of the cross correlation method by using PIV standard images , 1998 .

[28]  Joseph Katz,et al.  Elimination of peak-locking error in PIV analysis using the correlation mapping method , 2005 .

[29]  Steven J. Beresh,et al.  Comparison of PIV data using multiple configurations and processing techniques , 2009 .

[30]  Gérard Gouesbet,et al.  Particle lagrangian simulation in turbulent flows , 1990 .

[31]  Ann Karagozian,et al.  Local stability analysis of an inviscid transverse jet , 2007, Journal of Fluid Mechanics.

[32]  Jerry Westerweel,et al.  On velocity gradients in PIV interrogation , 2008 .

[33]  Liang-Shih Fan,et al.  Principles of gas-solid flows , 1998 .

[34]  Tommaso Astarita,et al.  Analysis of interpolation schemes for image deformation methods in PIV , 2005 .

[35]  C. Willert,et al.  Digital particle image velocimetry , 1991 .

[36]  Reijo Karvinen,et al.  A comparative study of five different PIV interrogation algorithms , 2005 .

[37]  Adric Eckstein,et al.  Assessment of advanced windowing techniques for digital particle image velocimetry (DPIV) , 2009 .

[38]  Ronald K. Hanson,et al.  Time evolution and mixing characteristics of hydrogen and ethylene transverse jets in supersonic crossflows , 2006 .

[39]  Z. C. Liu,et al.  Analysis and interpretation of instantaneous turbulent velocity fields , 2000 .

[40]  J. Westerweel Theoretical analysis of the measurement precision in particle image velocimetry , 2000 .

[41]  J. Riley,et al.  Equation of motion for a small rigid sphere in a nonuniform flow , 1983 .

[42]  P. Dimotakis,et al.  Particle velocimetry in high-gradient/high-curvature flows , 2006 .

[43]  Thomas Leweke,et al.  Analysis and treatment of errors due to high velocity gradients in particle image velocimetry , 2003 .

[44]  I. Grant,et al.  Confidence interval estimates in PIV measurements of turbulent flows. , 1990, Applied optics.

[45]  Eberhard Bodenschatz,et al.  Limitations of accuracy in PIV due to individual variations of particle image intensities , 2009 .

[46]  R. Adrian Particle-Imaging Techniques for Experimental Fluid Mechanics , 1991 .

[47]  Shigeru Nishio,et al.  Standard images for particle-image velocimetry , 2000 .

[48]  D. Hart,et al.  PIV error correction , 2000 .

[49]  A. Fincham,et al.  Advanced optimization of correlation imaging velocimetry algorithms , 2000 .

[50]  Tommaso Astarita,et al.  Analysis of interpolation schemes for image deformation methods in PIV: effect of noise on the accuracy and spatial resolution , 2006 .

[51]  J. Westerweel,et al.  The EUROPIV Synthetic Image Generator (S.I.G.) , 2004 .

[52]  T. Roesgen,et al.  Optimal subpixel interpolation in particle image velocimetry , 2003 .

[53]  G. G. Stokes On the Effect of the Internal Friction of Fluids on the Motion of Pendulums , 2009 .

[54]  M. G. Mungal,et al.  Planar velocity measurements in compressible mixing layers , 1997 .

[55]  H. E. Fiedler,et al.  Limitation and improvement of PIV , 1993 .

[56]  Fulvio Scarano,et al.  Theory of non-isotropic spatial resolution in PIV , 2003 .

[57]  W. Merzkirch,et al.  A digital mask technique for reducing the bias error of the correlation-based PIV interrogation algorithm , 2000 .

[58]  J. J. Wang,et al.  Limitation and improvement of PIV: Part I: Limitation of conventional techniques due to deformation of particle image patterns , 1993 .

[59]  C. Meinhart Investigation of Turbulent Boundary Layer Structure Using Particle-Image Velocimetry. , 1994 .

[60]  J. Bendat,et al.  Random Data: Analysis and Measurement Procedures , 1971 .

[61]  Energy Deposition Applied to a Transverse Jet in a Supersonic Crossflow , 2010 .

[62]  Cam Tropea,et al.  High-precision sub-pixel interpolation in particle image velocimetry image processing , 2005 .

[63]  R. Adrian,et al.  Effect of resolution on the speed and accuracy of particle image velocimetry interrogation , 1992 .