Highly conformable terahertz metasurface absorbers via two-photon polymerization on polymeric ultra-thin films

Abstract The continuously increasing interest in flexible and integrated photonics requires new strategies for device manufacturing on arbitrary complex surfaces and with smallest possible size, respectively. Terahertz (THz) technology can particularly benefit from this achievement to make compact systems for emission, detection and on-demand manipulation of THz radiation. Here, we present a novel fabrication method to realize conformable terahertz metasurfaces. The flexible and versatile character of polymeric nanomembranes is combined with direct laser writing via two-photon polymerization to develop free-standing ultra-thin quasi-perfect plasmonic absorbers with an unprecedentedly high level of conformability. Moreover, revealing new flexible dielectric materials presenting low absorption and permittivity in the THz range, this work paves the way for the realization of ultra-thin, conformable hybrid or all-dielectric devices to enhance and enlarge the application of THz technologies, and flexible photonics in general.

[1]  F. Gao,et al.  Flexible broadband terahertz absorbers for RCS reduction on conformal surfaces , 2022, Optics Communications.

[2]  G. Lanzani,et al.  A sub-150-nanometre-thick and ultraconformable solution-processed all-organic transistor , 2021, Nature Communications.

[3]  Stefano Varas,et al.  From flexible electronics to flexible photonics: A brief overview , 2021 .

[4]  Lijuan Xie,et al.  Wearable plasmonic-metasurface sensor for noninvasive and universal molecular fingerprint detection on biointerfaces , 2021, Science Advances.

[5]  Withawat Withayachumnankul,et al.  Dielectrics for Terahertz Metasurfaces: Material Selection and Fabrication Techniques , 2019, Advanced Optical Materials.

[6]  A. Di Falco,et al.  Holography Using Curved Metasurfaces , 2019, Photonics.

[7]  Qi Jie Wang,et al.  Modelling of free-form conformal metasurfaces , 2018, Nature Communications.

[8]  Virgilio Mattoli,et al.  Ultraconformable Freestanding Capacitors Based on Ultrathin Polyvinyl Formal Films , 2018, Advanced Electronic Materials.

[9]  G. Seniutinas,et al.  Beyond 100 nm resolution in 3D laser lithography — Post processing solutions , 2018, 1807.08462.

[10]  Cyril C. Renaud,et al.  The 2017 terahertz science and technology roadmap , 2017, Journal of Physics D: Applied Physics.

[11]  Yibin Ying,et al.  Flexible Plasmonic Metasurfaces with User‐Designed Patterns for Molecular Sensing and Cryptography , 2016 .

[12]  Houtong Chen,et al.  A review of metasurfaces: physics and applications , 2016, Reports on progress in physics. Physical Society.

[13]  Andrei Faraon,et al.  Decoupling optical function and geometrical form using conformal flexible dielectric metasurfaces , 2015, Nature Communications.

[14]  D. R. Chowdhury,et al.  Flexible metasurfaces and metamaterials: A review of materials and fabrication processes at micro- and nano-scales , 2015 .

[15]  Jianqiang Gu,et al.  Highly flexible broadband terahertz metamaterial quarter‐wave plate , 2014 .

[16]  B. Mazzolai,et al.  Gold nanoshell/polysaccharide nanofilm for controlled laser-assisted tissue thermal ablation. , 2014, ACS nano.

[17]  T. Suratwala,et al.  Enhanced delamination of ultrathin free-standing polymer films via self-limiting surface modification. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[18]  N. Yu,et al.  Flat optics with designer metasurfaces. , 2014, Nature materials.

[19]  B. Mazzolai,et al.  Thin film free-standing PEDOT:PSS/SU8 bilayer microactuators , 2013 .

[20]  B. Mazzolai,et al.  PMMA/polysaccharides nanofilm loaded with adenosine deaminase inhibitor for targeted anti-inflammatory drug delivery. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[21]  B. Mazzolai,et al.  Patterned free-standing conductive nanofilms for ultraconformable circuits and smart interfaces. , 2013, ACS applied materials & interfaces.

[22]  B. Mazzolai,et al.  Characterization of free-standing PEDOT:PSS/iron oxide nanoparticle composite thin films and application as conformable humidity sensors. , 2013, ACS applied materials & interfaces.

[23]  Andreas Tünnermann,et al.  Spatial and Spectral Light Shaping with Metamaterials , 2012, Advanced materials.

[24]  B. Mazzolai,et al.  Inkjet printing of protein microarrays on freestanding polymeric nanofilms for spatio-selective cell culture environment , 2012, Biomedical Microdevices.

[25]  Willie J Padilla,et al.  Metamaterial Electromagnetic Wave Absorbers , 2012, Advanced materials.

[26]  Martin Wegener,et al.  Tailored 3D Mechanical Metamaterials Made by Dip‐in Direct‐Laser‐Writing Optical Lithography , 2012, Advanced materials.

[27]  Derek Abbott,et al.  Elastomeric silicone substrates for terahertz fishnet metamaterials , 2012 .

[28]  Paolo Dario,et al.  Evaluation of substrata effect on cell adhesion properties using freestanding poly(L-lactic acid) nanosheets. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[29]  M. Dokmeci,et al.  Flexible Plasmonics on Unconventional and Nonplanar Substrates , 2011, Advanced materials.

[30]  G. Whitesides,et al.  Soft lithography for micro- and nanoscale patterning , 2010, Nature Protocols.

[31]  Willie J Padilla,et al.  Metamaterials on parylene thin film substrates: Design, fabrication, and characterization at terahertz frequency , 2010 .

[32]  R. Hey,et al.  Low-voltage terahertz quantum-cascade lasers based on LO-phonon-assisted interminiband transitions , 2009 .

[33]  R. Vendamme,et al.  Robust free-standing nanomembranes of organic/inorganic interpenetrating networks , 2006, Nature materials.

[34]  Valery Shklover,et al.  Negative Refractive Index Materials , 2006 .

[35]  Vladimir V Tsukruk,et al.  Freely suspended nanocomposite membranes as highly sensitive sensors , 2004, Nature materials.

[36]  Y. Shin,et al.  Two-photon lithography for three-dimensional fabrication in micro/nanoscale regime: A comprehensive review , 2021 .

[37]  Yonggang Huang,et al.  Transfer printing by kinetic control of adhesion to an elastomeric stamp , 2006 .