Modular Arithmetic on Elements of Small Norm in Quadratic Fields
暂无分享,去创建一个
[1] Attila Pethö,et al. A Generalization of a Theorem of Baker and Davenport , 1998 .
[2] Harvey Cohn,et al. Advanced Number Theory , 1980 .
[3] Henri Cohen,et al. A course in computational algebraic number theory , 1993, Graduate texts in mathematics.
[4] Attila Pethö,et al. Integer points on a family of elliptic curves , 2000 .
[5] H. C. Williams,et al. Short Representation of Quadratic Integers , 1995 .
[6] H. Davenport,et al. THE EQUATIONS 3x2−2 = y2 AND 8x2−7 = z2 , 1969 .
[7] H. Dubner,et al. Primes of the form . , 2000 .
[8] Michael J. Jacobson,et al. A computational approach for solving y2 =1k + 2k + ... + xk , 2003, Math. Comput..
[9] A. Dujella. On Diophantine quintuples , 1997 .
[10] Michael J. Jacobson,et al. Subexponential class group computation in quadratic orders , 1999 .
[11] Christine Abel,et al. Ein Algorithmus zur Berechnung der Klassenzahl und des Regulators reellquadratischer Ordnungen , 1994 .