Bounds on the Effective Anisotropic Elastic Constants

Hill [12] showed that it was possible to construct bounds on the effective isotropic elastic coefficients of a material with triclinic or greater symmetry. Hill noted that the triclinic symmetry coefficients appearing in the bounds could be specialized to those of a greater symmetry, yielding the effective isotropic elastic coefficients for a material with any elastic symmetry. It is shown here that it is possible to construct bounds on the effective elastic constants of a material with any anisotropic elastic symmetry in terms of triclinic symmetry elastic coefficients. Similarly, it is then possible to specialize the triclinic symmetry coefficients appearing in the bounds to those of a greater symmetry. Specific bounds are given for the effective elastic coefficients of cubic, hexagonal, tetragonal and trigonal symmetries in terms of the elastic coefficients of triclinic symmetry. These results are obtained by combining the approach of Hill [12] with a representation of the stress-strain relations due, in principle, to Kelvin [25,26] but recast in the structure of contemporary linear algebra.

[1]  R. Lipton On the behavior of elastic composites with transverse isotropic symmetry , 1991 .

[2]  R. Hill The Elastic Behaviour of a Crystalline Aggregate , 1952 .

[3]  Robert Lipton,et al.  Laminar elastic composites with crystallographic symmetry , 1990 .

[4]  T. C. T. Ting,et al.  Modern Theory of Anisotropic Elasticity and Applications , 1992 .

[5]  S. Cowin,et al.  Non-interacting modes for stress, strain and energy in anisotropic hard tissue. , 1991, Journal of biomechanics.

[6]  F. Fedorov Theory of Elastic Waves in Crystals , 1968 .

[7]  Stephen C. Cowin,et al.  EIGENTENSORS OF LINEAR ANISOTROPIC ELASTIC MATERIALS , 1990 .

[8]  William Thomson,et al.  XXI. Elements of a mathematical theory of elasticity , 1856, Philosophical Transactions of the Royal Society of London.

[9]  Bounds on elastic moduli of composites , 1995 .

[10]  I. Gel'fand,et al.  Lectures on Linear Algebra , 1961 .

[11]  R. Lipton Composites with symmetry and their extremal properties , 1994 .

[12]  M. Gurtin The Linear Theory of Elasticity , 1973 .

[13]  M. De Handbuch der Physik , 1957 .

[14]  W. Voigt,et al.  Lehrbuch der Kristallphysik , 1966 .

[15]  A. Burstein,et al.  The Mechanical Properties of Cortical Bone , 1974 .

[16]  Stephen C. Cowin,et al.  PROPERTIES OF THE ANISOTROPIC ELASTICITY TENSOR , 1989 .

[17]  S. Nemat-Nasser,et al.  Micromechanics: Overall Properties of Heterogeneous Materials , 1993 .

[18]  Stephen C. Cowin,et al.  Anisotropic Symmetries of Linear Elasticity , 1995 .

[19]  R. Hill Elastic properties of reinforced solids: some theoretical principles , 1963 .

[20]  A. Reuss,et al.  Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle . , 1929 .

[21]  Stephen C. Cowin,et al.  The structure of the linear anisotropic elastic symmetries , 1992 .

[22]  L. Mirsky,et al.  Introduction to Linear Algebra , 1965, The Mathematical Gazette.

[23]  J. Rychlewski,et al.  On Hooke's law☆ , 1984 .

[24]  Robert Lipton,et al.  Optimal bounds on effective elastic tensors for orthotropic composites , 1994, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.