Quantile Estimation in Dependent Sequences
暂无分享,去创建一个
[1] Philip Heidelberger,et al. Simulation Run Length Control in the Presence of an Initial Transient , 1983, Oper. Res..
[2] Leonard Kleinrock,et al. Theory, Volume 1, Queueing Systems , 1975 .
[3] David Walter Robinson. Non-parametric quantile estimation through stochastic approximation. , 1975 .
[4] E. S. Pearson. Biometrika tables for statisticians , 1967 .
[5] E. Parzen. On Estimation of a Probability Density Function and Mode , 1962 .
[6] P. Heidelberger,et al. Adaptive spectral methods for simulation output analysis , 1981 .
[7] A. J. Lawrance,et al. A new autoregressive time series model in exponential variables (NEAR(1)) , 1981, Advances in Applied Probability.
[8] P. Billingsley,et al. Convergence of Probability Measures , 1969 .
[9] Ralph L. Disney,et al. Applied Probability— Computer Science: The Interface , 1982, Progress in Computer Science.
[10] Donald L. Iglehart,et al. Simulating Stable Stochastic Systems, VI: Quantile Estimation , 1976, JACM.
[11] M. Rosenblatt. Remarks on Some Nonparametric Estimates of a Density Function , 1956 .
[12] L. Schruben. A Coverage Function for Interval Estimators of Simulation Response , 1980 .
[13] Gutti Jogesh Babu,et al. On deviations between empirical and quantile processes for mixing random variables , 1978 .
[14] A. J. Lawrance,et al. Generation of Some First-Order Autoregressive Markovian Sequences of Positive Random Variables with Given Marginal Distributions, , 1981 .
[15] Leonard Kleinrock,et al. Queueing Systems: Volume I-Theory , 1975 .
[16] Averill M. Law,et al. A Sequential Procedure for Determining the Length of a Steady-State Simulation , 1979, Oper. Res..
[17] W. J. Conover,et al. Practical Nonparametric Statistics , 1972 .
[18] A. F. Seila,et al. A Batching Approach to Quantile Estimation in Regenerative Simulations , 1982 .
[19] G. S. Fishman. Principles of Discrete Event Simulation , 1978 .
[20] Philip Heidelberger,et al. A spectral method for confidence interval generation and run length control in simulations , 1981, CACM.
[21] P. Sen. On the Bahadur representation of sample quantiles for sequences of φ-mixing random variables , 1972 .