On the search for low correlated binary sequences

Abstract The construction of binary sequences with low aperiodic correlation is one of the most famous, but also one of the most challenging, problems in signal design theory. In recent decades, many approaches from different mathematical disciplines have been used to tackle the problem. This paper summarizes the known results and adds some new results on the peak correlation of extended Legendre sequences and on binary arrays.

[1]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[2]  Ann M. Boehmer,et al.  Binary pulse compression codes , 1967, IEEE Trans. Inf. Theory.

[3]  Bernhard Schmidt,et al.  The Field Descent Method , 2005, Des. Codes Cryptogr..

[4]  Pingzhi Fan,et al.  SEQUENCE DESIGN FOR COMMUNICATIONS APPLICATIONS , 1996 .

[5]  Marcel J. E. Golay,et al.  A new search for skewsymmetric binary sequences with optimal merit factors , 1990, IEEE Trans. Inf. Theory.

[6]  V. Reddy,et al.  Biphase Sequence Generation with Low Sidelobe Autocorrelation Function , 1986, IEEE Transactions on Aerospace and Electronic Systems.

[7]  Marcel J. E. Golay A class of finite binary sequences with alternate auto-correlation values equal to zero (Corresp.) , 1972, IEEE Trans. Inf. Theory.

[8]  P. Borwein,et al.  Merit Factors of Polynomials Formed by Jacobi Symbols , 2001, Canadian Journal of Mathematics.

[9]  Jonathan Jedwab,et al.  A Survey of the Merit Factor Problem for Binary Sequences , 2004, SETA.

[10]  Tom Høholdt,et al.  Determination of the merit factor of Legendre sequences , 1988, IEEE Trans. Inf. Theory.

[11]  M. Schroeder Number Theory in Science and Communication , 1984 .

[12]  R. Mayer,et al.  Longest binary pulse compression codes with given peak sidelobe levels , 1986, Proceedings of the IEEE.

[13]  G. Dueck New optimization heuristics , 1993 .

[14]  Alexander Pott,et al.  Finite Geometry and Character Theory , 1995 .

[15]  R. Turyn Character sums and difference sets. , 1965 .

[16]  W. W. Peterson,et al.  Error-Correcting Codes. , 1962 .

[17]  Michel Bauderon,et al.  Searching for Weakly Autocorrelated Binary Sequences , 1987, AAECC.

[18]  Tom Høholdt,et al.  The merit factor of binary sequences related to difference sets , 1991, IEEE Trans. Inf. Theory.

[19]  Robert A. Scholtz,et al.  On the nonexistence of Barker arrays and related matters , 1989, IEEE Trans. Inf. Theory.

[20]  William W. Wu Elements of Digital Satellite Communication , 1984 .

[21]  Marcel J. E. Golay,et al.  The merit factor of long low autocorrelation binary sequences , 1982, IEEE Trans. Inf. Theory.

[22]  Peter B. Borwein,et al.  Binary sequences with merit factor greater than 6.34 , 2004, IEEE Transactions on Information Theory.

[23]  J. Storer,et al.  On binary sequences , 1961 .

[24]  MARCEL J. E. GOLAY,et al.  Sieves for low autocorrelation binary sequences , 1977, IEEE Trans. Inf. Theory.

[25]  J. Lindner,et al.  Binary sequences up to length 40 with best possible autocorrelation function , 1975 .

[26]  S. Mertens Exhaustive search for low-autocorrelation binary sequences , 1996 .

[27]  Michael Creutz,et al.  Microcanonical Monte Carlo Simulation , 1983 .

[28]  Matthew G. Parker,et al.  Binary sequences with merit factor >6.3 , 2004, IEEE Transactions on Information Theory.

[29]  Jonathan Jedwab,et al.  A note on the nonexistence of Barker sequences , 1992, Des. Codes Cryptogr..

[30]  Marcel J. E. Golay The merit factor of Legendre sequences , 1983, IEEE Trans. Inf. Theory.

[32]  Kwok-Kwong Stephen Choi,et al.  Explicit merit factor formulae for Fekete and Turyn polynomials , 2001 .

[33]  J. E. Littlewood,et al.  On Polynomials ∑ ±nzm,∑ eαminzm,z=e0i , 1966 .