Peptide signaling in Staphylococcus aureus and other Gram-positive bacteria

There are two basic types of bacterial communication systems--those in which the signal is directed solely at other organisms and those in which the signal is sensed by the producing organism as well. The former are involved primarily in conjugation; the latter in adaptation to the environment. Gram-positive bacteria use small peptides for both types of signaling, whereas Gram-negative bacteria use homoserine lactones. Since adaptation signals are autoinducers the response is population-density-dependent and has been referred to as "quorum-sensing". Gram-negative bacteria internalize the signals which act upon an intracellular receptor, whereas Gram-positive bacteria use them as ligands for the extracellular receptor of a two-component signaling module. In both cases, the signal activates a complex adaptation response involving many genes.

[1]  D. Dubnau,et al.  Competence for transformation: a matter of taste. , 1999, Current opinion in microbiology.

[2]  G. Dunny,et al.  Enterococcal sex pheromone precursors are part of signal sequences for surface lipoproteins , 2000, Molecular microbiology.

[3]  Mitsuhiko Ikura,et al.  NMR structure of the histidine kinase domain of the E. coli osmosensor EnvZ , 1998, Nature.

[4]  J. Michiels,et al.  Processing and export of peptide pheromones and bacteriocins in Gram-negative bacteria. , 2001, Trends in microbiology.

[5]  M. Ogura,et al.  Recent progress in Bacillus subtilis two-component regulation. , 2002, Frontiers in bioscience : a journal and virtual library.

[6]  M. Smeltzer,et al.  Role of the accessory gene regulator (agr) in pathogenesis of staphylococcal osteomyelitis , 1995, Infection and immunity.

[7]  M. Kanehisa,et al.  Whole genome sequencing of meticillin-resistant Staphylococcus aureus , 2001, The Lancet.

[8]  J. Kornblum,et al.  Synthesis of staphylococcal virulence factors is controlled by a regulatory RNA molecule. , 1993, The EMBO journal.

[9]  Yan Zhu,et al.  Solution structure of the homodimeric core domain of Escherichia coli histidine kinase EnvZ , 1999, Nature Structural Biology.

[10]  A. Bitler,et al.  Prevention of Staphylococcus aureus biofilm on dialysis catheters and adherence to human cells. , 2003, Kidney international.

[11]  T. Muir,et al.  Reversible and Specific Extracellular Antagonism of Receptor-Histidine Kinase Signaling* , 2002, The Journal of Biological Chemistry.

[12]  E. Greenberg,et al.  Regulation of gene expression by cell-to-cell communication: acyl-homoserine lactone quorum sensing. , 2001, Annual review of genetics.

[13]  Bonnie L Bassler,et al.  LuxS quorum sensing: more than just a numbers game. , 2003, Current opinion in microbiology.

[14]  T. Muir,et al.  Synthesis of proteins by native chemical ligation. , 1994, Science.

[15]  G. Jung,et al.  Structure of the pheromone peptide of the Staphylococcus epidermidis agr system , 1998, FEBS letters.

[16]  G. Weinstock,et al.  Effects of Enterococcus faecalis fsrGenes on Production of Gelatinase and a Serine Protease and Virulence , 2000, Infection and Immunity.

[17]  P. Tortosa,et al.  Specificity and Genetic Polymorphism of theBacillus Competence Quorum-Sensing System , 2001, Journal of bacteriology.

[18]  Gholson J Lyon,et al.  Detection of secreted peptides by using hypothesis-driven multistage mass spectrometry , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[19]  R. Rasooly,et al.  Autoinducer of virulence as a target for vaccine and therapy against Staphylococcus aureus. , 1998, Science.

[20]  H. Sahl,et al.  Posttranslationally modified bacteriocins--the lantibiotics. , 2000, Biopolymers.

[21]  L. Gray,et al.  Transmembrane Topology of AgrB, the Protein Involved in the Post-translational Modification of AgrD in Staphylococcus aureus * , 2002, The Journal of Biological Chemistry.

[22]  R. Beavis,et al.  Bacterial interference caused by autoinducing peptide variants. , 1997, Science.

[23]  A. Tarkowski,et al.  The accessory gene regulator (agr) controls Staphylococcus aureus virulence in a murine arthritis model , 1993, Infection and immunity.

[24]  D. Diep,et al.  Characterization of the locus responsible for the bacteriocin production in Lactobacillus plantarum C11 , 1996, Journal of bacteriology.

[25]  B. Bassler,et al.  The languages of bacteria. , 2001, Genes & development.

[26]  A. Tomasz,et al.  Control of the Competent State in Pneumococcus by a Hormone-Like Cell Product: An Example for a New Type of Regulatory Mechanism in Bacteria , 1965, Nature.

[27]  R. Hakenbeck,et al.  Natural competence in the genus Streptococcus: evidence that streptococci can change pherotype by interspecies recombinational exchanges , 1997, Journal of bacteriology.

[28]  R. Beavis,et al.  Cell density control of staphylococcal virulence mediated by an octapeptide pheromone. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[29]  F. Vandenesch,et al.  Theagr P2 operon: An autocatalytic sensory transduction system inStaphylococcus aureus , 1995, Molecular and General Genetics MGG.

[30]  F. Vandenesch,et al.  The agr P2 operon: an autocatalytic sensory transduction system in Staphylococcus aureus. , 1995, Molecular & general genetics : MGG.

[31]  M. Gilmore,et al.  Accessory gene regulator controls Staphylococcus aureus virulence in endophthalmitis. , 1995, Investigative ophthalmology & visual science.

[32]  M. Gilmore,et al.  Two-component regulator of Enterococcus faecalis cytolysin responds to quorum-sensing autoinduction , 2002, Nature.

[33]  F. Vandenesch,et al.  High Genetic Variability of the agr Locus in Staphylococcus Species , 2002, Journal of bacteriology.

[34]  T. Muir,et al.  Structure-activity analysis of synthetic autoinducing thiolactone peptides from Staphylococcus aureus responsible for virulence. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[35]  S. Arvidson,et al.  The role of the delta‐lysin gene (hld) in the regulation of virulence genes by the accessory gene regulator (agr) in Staphylococcus aureus. , 1990, The EMBO journal.

[36]  G. Weinstock,et al.  Characterization of fsr, a Regulator Controlling Expression of Gelatinase and Serine Protease inEnterococcus faecalis OG1RF , 2001, Journal of bacteriology.

[37]  K. Amrein,et al.  Microarray-Based Identification of a NovelStreptococcus pneumoniae Regulon Controlled by an Autoinduced Peptide , 2000, Journal of bacteriology.

[38]  V. Hruby Designing peptide receptor agonists and antagonists , 2002, Nature Reviews Drug Discovery.

[39]  B. Lazazzera,et al.  The extracellular Phr peptide-Rap phosphatase signaling circuit of Bacillus subtilis. , 2003, Frontiers in bioscience : a journal and virtual library.

[40]  G. Dunny,et al.  Peptide pheromone-induced transfer of plasmid pCF10 in Enterococcus faecalis: probing the genetic and molecular basis for specificity of the pheromone response , 2001, Peptides.

[41]  R. Zagursky,et al.  Transcription Profiling-Based Identification ofStaphylococcus aureus Genes Regulated by the agrand/or sarA Loci , 2001, Journal of bacteriology.

[42]  James R. Brown,et al.  A genomic analysis of two‐component signal transduction in Streptococcus pneumoniae , 2000, Molecular microbiology.

[43]  A. Giraudo,et al.  Phenotypic characterization and virulence of a sae- agr- mutant of Staphylococcus aureus. , 1996, Canadian journal of microbiology.

[44]  G. Boşgelmez-Tinaz,et al.  Quorum Sensing in Gram-Negative Bacteria , 2003 .

[45]  A. Rincé,et al.  Molecular characterization of Enterococcus faecalis two-component signal transduction pathways related to environmental stresses. , 2003, Environmental microbiology.

[46]  R. Hakenbeck,et al.  Allelic variation in a peptide-inducible two-component system of Streptococcus pneumoniae. , 2000, FEMS microbiology letters.

[47]  A L Cheung,et al.  Diminished virulence of a sar-/agr- mutant of Staphylococcus aureus in the rabbit model of endocarditis. , 1994, The Journal of clinical investigation.

[48]  T. Muir,et al.  Exfoliatin-Producing Strains Define a Fourthagr Specificity Group in Staphylococcus aureus , 2000, Journal of bacteriology.

[49]  R. Novick Autoinduction and signal transduction in the regulation of staphylococcal virulence , 2003, Molecular microbiology.

[50]  I. Nes,et al.  Identification of the streptococcal competence‐pheromone receptor , 1996, Molecular microbiology.

[51]  Saul Tzipori,et al.  Characterization of RAP, a quorum sensing activator of Staphylococcus aureus. , 2003, FEMS microbiology letters.

[52]  F. Ausubel,et al.  The Enterococcus faecalis fsrB Gene, a Key Component of the fsr Quorum-Sensing System, Is Associated with Virulence in the Rabbit Endophthalmitis Model , 2002, Infection and Immunity.

[53]  L. Håvarstein,et al.  Induction of natural competence in Streptococcus pneumoniae triggers lysis and DNA release from a subfraction of the cell population , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[54]  W. Chan,et al.  Structure, activity and evolution of the group I thiolactone peptide quorum‐sensing system of Staphylococcus aureus , 2001, Molecular microbiology.

[55]  B. Cookson Whole genome sequencing of methicillin resistant Staphylococcus aureus , 2001 .

[56]  D. Clewell,et al.  Enterococcal plasmid transfer: sex pheromones, transfer origins, relaxases, and the Staphylococcus aureus issue. , 2002, Plasmid.

[57]  Frederick M. Ausubel,et al.  Virulence Effect of Enterococcus faecalis Protease Genes and the Quorum-Sensing Locus fsr in Caenorhabditis elegans and Mice , 2002, Infection and Immunity.

[58]  M. Otto,et al.  Pheromone Cross-Inhibition betweenStaphylococcus aureus and Staphylococcus epidermidis , 2001, Infection and Immunity.

[59]  D. Dubnau,et al.  Specific activation of the Bacillus quorum‐sensing systems by isoprenylated pheromone variants , 2002, Molecular microbiology.

[60]  Peter S. C. Lau,et al.  Natural Genetic Transformation ofStreptococcus mutans Growing in Biofilms , 2001, Journal of bacteriology.

[61]  W. M. Vos,et al.  Protein engineering of lantibiotics , 1996, Antonie van Leeuwenhoek.

[62]  L. Quadri Regulation of antimicrobial peptide production by autoinducer-mediated quorum sensing in lactic acid bacteria. , 2002 .

[63]  M. Otto,et al.  Inducible expression and cellular location of AgrB, a protein involved in the maturation of the staphylococcal quorum-sensing pheromone , 2000, Archives of Microbiology.

[64]  F. Vandenesch,et al.  Transmembrane topology and histidine protein kinase activity of AgrC, the agr signal receptor in Staphylococcus aureus , 1998, Molecular microbiology.

[65]  P. Rossitto,et al.  Prevention of diseases caused by Staphylococcus aureus using the peptide RIP , 2000, Peptides.

[66]  T. Muir,et al.  Key determinants of receptor activation in the agr autoinducing peptides of Staphylococcus aureus. , 2002, Biochemistry.

[67]  H. Sahl,et al.  Lantibiotics: biosynthesis and biological activities of uniquely modified peptides from gram-positive bacteria. , 1998, Annual review of microbiology.

[68]  W. D. de Vos,et al.  Gelatinase biosynthesis‐activating pheromone: a peptide lactone that mediates a quorum sensing in Enterococcus faecalis , 2001, Molecular microbiology.

[69]  J. Bargonetti,et al.  Measurement of gene expression by translational coupling: effect of copy mutations on pT181 initiator synthesis. , 1993, The EMBO journal.

[70]  M. Bibb,et al.  Purification and Structural Determination of SCB1, a γ-Butyrolactone That Elicits Antibiotic Production inStreptomyces coelicolor A3(2)* , 2000, The Journal of Biological Chemistry.

[71]  G. Jung,et al.  Inhibition of virulence factor expression in Staphylococcus aureus by the Staphylococcus epidermidis agr pheromone and derivatives , 1999, FEBS letters.

[72]  H. Nagasawa,et al.  Chemical Synthesis and Biological Activity of The Gelatinase Biosynthesis-Activating Pheromone of Enterococcus faecalis and Its Analogs , 2001, Bioscience, biotechnology, and biochemistry.

[73]  Ingolf F. Nes,et al.  Production of class II bacteriocins by lactic acid bacteria; an example of biological warfare and communication , 2002, Antonie van Leeuwenhoek.

[74]  A. Bitler,et al.  RNAIII inhibiting peptide (RIP), a global inhibitor of Staphylococcus aureus pathogenesis: structure and function analysis , 2001, Peptides.

[75]  I. Kurtser,et al.  An Autoregulatory Circuit Affecting Peptide Signaling in Bacillus subtilis , 1999, Journal of bacteriology.

[76]  M. Inouye,et al.  Histidine kinases: diversity of domain organization , 1999, Molecular microbiology.

[77]  T. Muir,et al.  Activation and Inhibition of the Staphylococcal AGR System , 2000 .

[78]  D. Morrison,et al.  An unmodified heptadecapeptide pheromone induces competence for genetic transformation in Streptococcus pneumoniae. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[79]  M. Dinges,et al.  Aggregation and binding substances enhance pathogenicity in rabbit models of Enterococcus faecalis endocarditis. , 1998, Infection and immunity.

[80]  M. Lonetto,et al.  A functional genomic analysis of type 3 Streptococcus pneumoniae virulence , 2001, Molecular microbiology.

[81]  W A Hendrickson,et al.  Structural and Mutational Analysis of the PhoQ Histidine Kinase Catalytic Domain , 2001, The Journal of Biological Chemistry.

[82]  Bonnie L Bassler,et al.  Small Talk Cell-to-Cell Communication in Bacteria , 2002, Cell.

[83]  T. Muir,et al.  Rational design of a global inhibitor of the virulence response in Staphylococcus aureus, based in part on localization of the site of inhibition to the receptor-histidine kinase, AgrC. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[84]  H. Sahl,et al.  Mode of action of modified and unmodified bacteriocins from Gram-positive bacteria. , 2002, Biochimie.

[85]  G. Pozzi,et al.  Competence for genetic transformation in encapsulated strains of Streptococcus pneumoniae: two allelic variants of the peptide pheromone , 1996, Journal of bacteriology.

[86]  M. Dinges,et al.  Aggregation and Binding Substances Enhance Pathogenicity in Rabbit Models of Enterococcus faecalis Endocarditis , 1998, Infection and Immunity.

[87]  E. Greenberg,et al.  Signalling: Listening in on bacteria: acyl-homoserine lactone signalling , 2002, Nature Reviews Molecular Cell Biology.

[88]  W. D. de Vos,et al.  Autoregulation of Nisin Biosynthesis in Lactococcus lactis by Signal Transduction (*) , 1995, The Journal of Biological Chemistry.

[89]  L. Tran,et al.  Divergent structure of the ComQXPA quorum‐sensing components: molecular basis of strain‐specific communication mechanism in Bacillus subtilis , 2000, Molecular microbiology.

[90]  S. Arvidson,et al.  Regulation of agr-Dependent Virulence Genes in Staphylococcus aureus by RNAIII from Coagulase-Negative Staphylococci , 1998, Journal of bacteriology.