MACROEVOLUTION AND MACROECOLOGY THROUGH DEEP TIME

The fossil record documents two mutually exclusive macroevolutionary modes separated by the transitional Ediacaran Period. Despite the early appearance of crown eukaryotes and an at least partially oxygenated atmosphere, the pre-Ediacaran biosphere was populated almost exclusively by microscopic organisms exhibiting low diversity, no biogeographical partitioning and profound morphological/evolutionary stasis. By contrast, the post-Ediacaran biosphere is characterized by large diverse organisms, bioprovinciality and conspicuously dynamic macroevolution. The difference can be understood in terms of the unique escalatory coevolution accompanying the early Ediacaran introduction of eumetazoans, followed by their early Cambrian (Tommotian) expansion into the pelagic realm. Eumetazoans reinvented the rules of macroecology through their invention of multitrophic food webs, large body size, life-history trade-offs, ecological succession, biogeography, major increases in standing biomass, eukaryote-dominated phytoplankton and the potential for mass extinction. Both the pre-Ediacaran and the post-Ediacaran biospheres were inherently stable, but the former derived from the simplicity of superabundant microbes exposed to essentially static, physical environments, whereas the latter is based on eumetazoan-induced diversity and dynamic, biological environments. The c. 100-myr Ediacaran transition (extending to the base of the Tommotian) can be defined on evolutionary criteria, and might usefully be incorporated into the Phanerozoic.

[1]  Purificación López-García,et al.  The molecular ecology of microbial eukaryotes unveils a hidden world. , 2002, Trends in microbiology.

[2]  M. Westoby,et al.  Spatial scaling of microbial eukaryote diversity , 2004, Nature.

[3]  T. Thingstad A theoretical approach to structuring mechanisms in the pelagic food web , 2004, Hydrobiologia.

[4]  A theoretical approach to structuring mechanisms in the pelagic food web , 1998 .

[5]  H. Jakobsen Escape of protists in predator-generated feeding currents , 2002 .

[6]  N. Butterfield,et al.  Diverse organic-walled fossils, including “possible dinoflagellates,” from the early Neoproterozoic of arctic Canada , 1998 .

[7]  P. Schwinghamer Generating ecological hypotheses from biomass spectra using causal analysis: a benthic example , 1983 .

[8]  B. Menge,et al.  Indirect Effects in Marine Rocky Intertidal Interaction Webs: Patterns and Importance , 1995 .

[9]  G. Narbonne THE EDIACARA BIOTA: Neoproterozoic Origin of Animals and Their Ecosystems , 2005 .

[10]  V. Smetácek,et al.  Organism life cycles, predation, and the structure of marine pelagic ecosystems , 1996 .

[11]  J. D. Aitken,et al.  Ediacaran remains from intertillite beds in northwestern Canada , 1990 .

[12]  P. Falkowski,et al.  Adaptive Evolution of Phytoplankton Cell Size , 2005, The American Naturalist.

[13]  J. Kirschvink,et al.  Age of Neoproterozoic bilatarian body and trace fossils, White Sea, Russia: implications for metazoan evolution. , 2000, Science.

[14]  D. McShea PERSPECTIVE METAZOAN COMPLEXITY AND EVOLUTION: IS THERE A TREND? , 1996, Evolution; international journal of organic evolution.

[15]  P. Roopnarine Extinction cascades and catastrophe in ancient food webs , 2006, Paleobiology.

[16]  B. Sokolov,et al.  Vendotaenids —Vendian Metaphytes , 1990 .

[17]  蒋志刚,et al.  Week 11: macroecology , 2021 .

[18]  J. Schopf Disparate rates, differing fates: tempo and mode of evolution changed from the Precambrian to the Phanerozoic. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[19]  M. Lynch,et al.  The Origins of Genome Complexity , 2003, Science.

[20]  富谷 朗子 The evolutionary diversification of cyanobacteria : Molecular-phylogenetic and paleontological perspectives , 2002 .

[21]  T. Olszewski,et al.  Long-Term Stasis in Ecological Assemblages: Evidence from the Fossil Record* , 2004 .

[22]  D. Dilcher Toward a new synthesis: major evolutionary trends in the angiosperm fossil record. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[23]  D. McIlroy,et al.  The Impact of Bioturbation on Infaunal Ecology and Evolution During the Proterozoic-Cambrian Transition , 1999 .

[24]  G. Vidal,et al.  Biodiversity, speciation, and extinction trends of Proterozoic and Cambrian phytoplankton , 1997, Paleobiology.

[25]  D. Penny,et al.  Prokaryote and eukaryote evolvability. , 2003, Bio Systems.

[26]  E. Odum The strategy of ecosystem development. , 1969, Science.

[27]  Mark V. Lomolino,et al.  Species Diversity in Space and Time. , 1996 .

[28]  M. A. R. Koehl,et al.  WHEN DOES MORPHOLOGY MATTER , 1996 .

[29]  K. Peterson,et al.  Origin of the Eumetazoa: testing ecological predictions of molecular clocks against the Proterozoic fossil record. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[30]  Stephen R. Carpenter,et al.  Ecological community description using the food web, species abundance, and body size , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[31]  J. Duffy,et al.  Biodiversity and ecosystem function: the consumer connection , 2002 .

[32]  W. Doolittle,et al.  Prokaryotic evolution in light of gene transfer. , 2002, Molecular biology and evolution.

[33]  David Jablonski,et al.  Micro- and macroevolution: scale and hierarchy in evolutionary biology and paleobiology , 2000, Paleobiology.

[34]  B. Worm,et al.  Biodiversity, productivity and stability in real food webs , 2003 .

[35]  L. M. Walter,et al.  Dissolution of Recent platform carbonate sediments in marine pore fluids , 1990 .

[36]  A. Knoll,et al.  Recognizing and Interpreting the Fossils of Early Eukaryotes , 2003, Origins of life and evolution of the biosphere.

[37]  C. Berney,et al.  A molecular time-scale for eukaryote evolution recalibrated with the continuous microfossil record , 2006, Proceedings of the Royal Society B: Biological Sciences.

[38]  A. Zhuravlev Biota diversity and structure during the Neoproterozoic-Ordovician transition , 2001 .

[39]  N. Butterfield Exceptional Fossil Preservation and the Cambrian Explosion1 , 2003, Integrative and comparative biology.

[40]  D. G. Adams,et al.  Tansley Review No. 107. Heterocyst and akinete differentiation in cyanobacteria , 1999 .

[41]  S. Xiao,et al.  1.3 Billion years of acritarch history: An empirical morphospace approach , 2006 .

[42]  Donald E. Canfield,et al.  Late Proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulphur-isotope studies , 1996, Nature.

[43]  J. Willis Age and Area , 1926, The Quarterly Review of Biology.

[44]  M. Fedonkin The origin of the Metazoa in the light of the Proterozoic fossil record , 2003 .

[45]  S Blair Hedges,et al.  BMC Evolutionary Biology BioMed Central , 2003 .

[46]  B. Lieberman PHYLOGENETIC ANALYSIS OF SOME BASAL EARLY CAMBRIAN TRILOBITES, THE BIOGEOGRAPHIC ORIGINS OF THE EUTRILOBITA, AND THE TIMING OF THE CAMBRIAN RADIATION , 2002, Journal of Paleontology.

[47]  A. Knoll,et al.  Paleobiology of the Neoproterozoic Svanbergfjellet Formation, Spitsbergen , 2006 .

[48]  Stephen Jay Gould,et al.  The paradox of the first tier: an agenda for paleobiology , 1985, Paleobiology.

[49]  John Alroy,et al.  How many named species are valid? , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[50]  J. William Schopf,et al.  Fossil evidence of Archaean life , 2006, Philosophical Transactions of the Royal Society B: Biological Sciences.

[51]  W. Whitman,et al.  Prokaryotes: the unseen majority. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[52]  A. Leroi The scale independence of evolution , 2000, Evolution & development.

[53]  Victor Smetacek,et al.  Architecture and material properties of diatom shells provide effective mechanical protection , 2003, Nature.

[54]  G. Bell,et al.  Regular ArticleSize and complexity among multicellular organisms , 1997 .

[55]  Susan M. Huse,et al.  Microbial diversity in the deep sea and the underexplored “rare biosphere” , 2006, Proceedings of the National Academy of Sciences.

[56]  H. Hofmann Precambrian microflora, Belcher Islands, Canada; significance and systematics , 1976 .

[57]  A. J. Kaufman,et al.  Biostratigraphic and chemostratigraphic correlation of Neoproterozoic sedimentary successions: upper Tindir Group, northwestern Canada, as a test case. , 1992, Geology.

[58]  N. Butterfield,et al.  Palaeoenvironmental distribution of Proterozoic microfossils, with an example from the Agu Bay Formation, Baffin Island , 1992 .

[59]  R. W. Sheldon,et al.  The Size Distribution of Particles in the OCEAN1 , 1972 .

[60]  M. Jackson,et al.  Origin of the Metazoa , 1979, Nature.

[61]  N. Butterfield,et al.  Bangiomorpha pubescens n. gen., n. sp.: implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes , 2000, Paleobiology.

[62]  Michael L. Rosenzweig,et al.  Species Diversity in Space and Time , 1997 .

[63]  James H. Brown,et al.  Toward a metabolic theory of ecology , 2004 .

[64]  N. Butterfield Plankton ecology and the Proterozoic-Phanerozoic transition , 1997, Paleobiology.

[65]  R Buick,et al.  Archean molecular fossils and the early rise of eukaryotes. , 1999, Science.

[66]  B. Silverman,et al.  The contribution of species richness and composition to bacterial services , 2005, Nature.

[67]  M. Walter,et al.  Coiled carbonaceous megafossils from the Middle Proterozoic of Jixian (Tianjin) and Montana , 1990 .

[68]  P. Reich,et al.  Biodiversity and ecosystem stability in a decade-long grassland experiment , 2006, Nature.

[69]  Donald E. Canfield,et al.  Ocean productivity before about 1.9 Gyr ago limited by phosphorus adsorption onto iron oxides , 2002, Nature.

[70]  J. Payne,et al.  Controls on marine animal biomass through geological time , 2006 .

[71]  A. Knoll,et al.  Permineralized Fossils from the Terminal Proterozoic Doushantuo Formation, South China , 1998, Journal of Paleontology.

[72]  M. Blackwell,et al.  Taxonomic diversity and interactions of insect-associated ascomycetes , 1997, Biodiversity & Conservation.

[73]  J. Hughes,et al.  A taxa–area relationship for bacteria , 2004, Nature.

[74]  G. E. Hutchinson,et al.  Homage to Santa Rosalia or Why Are There So Many Kinds of Animals? , 1959, The American Naturalist.

[75]  R. Bambach Seafood through time: changes in biomass, energetics, and productivity in the marine ecosystem , 1993, Paleobiology.

[76]  S. Kumar Megafossils from the Mesoproterozoic Rohtas Formation (the Vindhyan Supergroup), Katni area, central India , 1995 .

[77]  M. Walter,et al.  Late Proterozoic and Cambrian microfossils and biostratigraphy, Amadeus Basin, Central Australia , 1992 .

[78]  Andrew Pohorille,et al.  The NASA Astrobiology Roadmap. , 2008, Astrobiology.

[79]  J. Elser,et al.  Early Cambrian food webs on a trophic knife-edge? A hypothesis and preliminary data from a modern stromatolite-based ecosystem. , 2006, Ecology letters.

[80]  Robert M. May,et al.  Stability and Complexity in Model Ecosystems , 2019, IEEE Transactions on Systems, Man, and Cybernetics.

[81]  M. Rosenzweig The four questions: What does the introduction of exotic species do to diversity? , 2001 .

[82]  D. Erwin,et al.  AUTECOLOGY AND THE FILLING OF ECOSPACE: KEY METAZOAN RADIATIONS , 2007 .

[83]  S. Jensen The Proterozoic and Earliest Cambrian Trace Fossil Record; Patterns, Problems and Perspectives1 , 2003, Integrative and comparative biology.

[84]  S. Bengtson,et al.  Discoidal Impressions and Trace-Like Fossils More Than 1200 Million Years Old , 2002, Science.

[85]  J. Sepkoski,et al.  A kinetic model of Phanerozoic taxonomic diversity. III. Post-Paleozoic families and mass extinctions , 1984, Paleobiology.

[86]  G. Vermeij The origin of skeletons , 1989 .

[87]  N. Butterfield Probable Proterozoic fungi , 2005, Paleobiology.

[88]  D. Grazhdankin Patterns of distribution in the Ediacaran biotas: facies versus biogeography and evolution , 2004, Paleobiology.

[89]  S. Jensen,et al.  A critical reappraisal of the fossil record of the bilaterian phyla. , 2007 .

[90]  A. Knoll,et al.  Proterozoic Ocean Chemistry and Evolution: A Bioinorganic Bridge? , 2002, Science.

[91]  T. Cavalier-smith,et al.  Cell evolution and Earth history: stasis and revolution , 2006, Philosophical Transactions of the Royal Society B: Biological Sciences.

[92]  B. Bohannan,et al.  Spatial scaling of microbial biodiversity. , 2006, Trends in ecology & evolution.

[93]  R. May Biological diversity: differences between land and sea , 1994 .

[94]  H. Volk,et al.  Biomarkers from Huronian oil-bearing fluid inclusions: An uncontaminated record of life before the Great Oxidation Event , 2006 .

[95]  Ricard V Solé,et al.  Recovery after mass extinction: evolutionary assembly in large-scale biosphere dynamics. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[96]  Nigel Goldenfeld,et al.  On the origin and robustness of power-law species–area relationships in ecology , 2006, Proceedings of the National Academy of Sciences.

[97]  Developmental variability and the limits of adaptation: interactions with stress , 1993 .

[98]  M. Walter,et al.  Neoproterozoic biotic diversification: Snowball Earth or aftermath of the Acraman impact? , 2003 .

[99]  R. Norris Pelagic species diversity, biogeography, and evolution , 2000, Paleobiology.

[100]  C. McKay,et al.  Why O2 is required by complex life on habitable planets and the concept of planetary "oxygenation time". , 2005, Astrobiology.

[101]  S. Jensen,et al.  A critical reappraisal of the fossil record of the bilaterian phyla , 2000, Biological reviews of the Cambridge Philosophical Society.

[102]  T. Naganuma Calanoid copepods:linking lower-higher trophic levels by linking lower-higher Reynolds numbers , 1996 .

[103]  A. Knoll,et al.  The early evolution of eukaryotes: a geological perspective. , 1992, Science.

[104]  Hervé Philippe,et al.  Early–branching or fast–evolving eukaryotes? An answer based on slowly evolving positions , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[105]  Sitabhra Sinha,et al.  Evidence of universality for the May-Wigner stability theorem for random networks with local dynamics. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[106]  S. R. Kerr,et al.  The Biomass Spectrum: A Predator-Prey Theory of Aquatic Production , 2001 .

[107]  P. Jeffries Microbial Diversity and Ecosystem Function , 1998, Biodiversity and Conservation.

[108]  D. Erwin Macroevolution is more than repeated rounds of microevolution , 2000, Evolution & development.

[109]  T. Davis,et al.  Does the rapid appearance of life on Earth suggest that life is common in the universe? , 2002, Astrobiology.

[110]  S. Carroll Chance and necessity: the evolution of morphological complexity and diversity , 2001, Nature.

[111]  Richard J. Aldridge,et al.  The Cambrian Fossils of Chengjiang, China , 2003 .

[112]  M. Wills,et al.  The Cambrian evolutionary ‘explosion’: decoupling cladogenesis from morphological disparity , 1996 .

[113]  James J. Elser,et al.  Organism size, life history, and N:P stoichiometry , 1996 .

[114]  P. Wassmann Retention versus export food chains: processes controlling sinking loss from marine pelagic systems , 1997, Hydrobiologia.

[115]  C. Marshall Explaining the Cambrian "Explosion" of Animals , 2006 .

[116]  B. Pratt,et al.  Borings in Cloudina Shells: Complex Predator-Prey Dynamics in the Terminal Neoproterozoic , 2003 .

[117]  N. Butterfield,et al.  Cambrian Food Webs , 2007 .

[118]  A. Knoll,et al.  VASE-SHAPED MICROFOSSILS FROM THE NEOPROTEROZOIC CHUAR GROUP, GRAND CANYON: A CLASSIFICATION GUIDED BY MODERN TESTATE AMOEBAE , 2003, Journal of Paleontology.

[119]  W. Sloan,et al.  Taxa-area relationships for microbes: the unsampled and the unseen. , 2006, Ecology letters.

[120]  David Tilman,et al.  Biodiversity, Stability, and Productivity in Competitive Communities , 2000, The American Naturalist.

[121]  David Jablonski,et al.  Mass extinctions and macroevolution , 2005, Paleobiology.

[122]  M. Brasier Nutrient-enriched waters and the early skeletal fossil record , 1992, Journal of the Geological Society.

[123]  S. Peters Geologic constraints on the macroevolutionary history of marine animals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[124]  J. Hayes,et al.  Terminal Proterozoic reorganization of biogeochemical cycles , 1995, Nature.

[125]  R. Holt,et al.  Phytoplankton species richness scales consistently from laboratory microcosms to the world's oceans. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[126]  David Deamer,et al.  The NASA Astrobiology Roadmap. , 2003, Astrobiology.

[127]  S. Xiao Mitotic topologies and mechanics of Neoproterozoic algae and animal embryos , 2002, Paleobiology.

[128]  N. Butterfield A vaucheriacean alga from the middle Neoproterozoic of Spitsbergen: implications for the evolution of Proterozoic eukaryotes and the Cambrian explosion , 2004, Paleobiology.

[129]  J. Lawton,et al.  Scale and species numbers. , 2001, Trends in ecology & evolution.

[130]  C. Brett,et al.  Coordinated stasis: An overview , 1996 .

[131]  A. Knoll,et al.  MACROSCOPIC CARBONACEOUS COMPRESSIONS IN A TERMINAL PROTEROZOIC SHALE: A SYSTEMATIC REASSESSMENT OF THE MIAOHE BIOTA, SOUTH CHINA , 2002, Journal of Paleontology.

[132]  Arne Ø. Mooers,et al.  Size and complexity among multicellular organisms , 1997 .

[133]  J. Deming,et al.  Deep-sea deposit-feeding strategies suggested by environmental and feeding constraints , 1990, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[134]  A. Knoll,et al.  Eukaryotic organisms in Proterozoic oceans , 2006, Philosophical Transactions of the Royal Society B: Biological Sciences.

[135]  F. Ayala,et al.  Proterozoic and Early Cambrian Protists: Evidence for Accelerating Evolutionary Tempo , 1995 .

[136]  Bland J. Finlay,et al.  Microbial diversity and ecosystem function , 1997 .

[137]  Michele R. Dudash,et al.  Pollination Syndromes and Floral Specialization , 2004 .

[138]  T. Cavalier-smith,et al.  The neomuran origin of archaebacteria, the negibacterial root of the universal tree and bacterial megaclassification. , 2002, International journal of systematic and evolutionary microbiology.

[139]  S. Kumar,et al.  Mesoproterozoic megafossil Chuaria-Tawuia association may represent parts of a multicellular plant, Vindhyan Supergroup, Central India , 2001 .

[140]  Douglas H. Erwin,et al.  Deep Time : Paleobiology's Perspective , 2001 .

[141]  G. Vermeij THE EVOLUTIONARY INTERACTION AMONG SPECIES: Selection, Escalation, and Coevolution , 1994 .

[142]  Roger E. Summons,et al.  2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis , 1999, Nature.

[143]  J. Grotzinger,et al.  Extinction of Cloudina and Namacalathus at the Precambrian-Cambrian boundary in Oman , 2003 .

[144]  D Penny,et al.  Genomics and the Irreducible Nature of Eukaryote Cells , 2006, Science.

[145]  A. Knoll,et al.  Radiations and extinctions of plankton in the late Proterozoic and early Cambrian , 1982, Nature.

[146]  S. Naeem,et al.  CONSUMER SPECIES RICHNESS AND AUTOTROPHIC BIOMASS , 1998 .

[147]  Pfluger,et al.  Triploblastic animals more than 1 billion years ago: trace fossil evidence from india , 1998, Science.

[148]  B. Finlay Global Dispersal of Free-Living Microbial Eukaryote Species , 2002, Science.

[149]  Halverson,et al.  A neoproterozoic snowball earth , 1998, Science.

[150]  M. Viitasalo,et al.  Prey switching behaviour in the planktonic copepod Acartia tonsa , 1996 .

[151]  Schopf Jw Disparate rates, differing fates: tempo and mode of evolution changed from the Precambrian to the Phanerozoic , 1994 .

[152]  N. Butterfield Reconstructing a complex early Neoproterozoic eukaryote, Wynniatt Formation, arctic Canada , 2005 .

[153]  B. Runnegar The Cambrian explosion: Animals or fossils? , 1982 .

[154]  A. Knoll,et al.  The Ediacaran Period: A New Addition to the Geologic Time Scale , 2006 .

[155]  R. Amann,et al.  The species concept for prokaryotes. , 2013, FEMS microbiology reviews.

[156]  Michael B Bonsall,et al.  Life History Trade-Offs Assemble Ecological Guilds , 2004, Science.

[157]  K. McCann The diversity–stability debate , 2000, Nature.