Practical and Efficient Split Decomposition via Graph-Labelled Trees

Split decomposition of graphs was introduced by Cunningham (under the name join decomposition) as a generalization of the modular decomposition. This paper undertakes an investigation into the algorithmic properties of split decomposition. We do so in the context of graph-labelled trees (GLTs), a new combinatorial object designed to simplify its consideration. GLTs are used to derive an incremental characterization of split decomposition, with a simple combinatorial description, and to explore its properties with respect to Lexicographic Breadth-First Search (LBFS). Applying the incremental characterization to an LBFS ordering results in a split decomposition algorithm that runs in time O(n+m)α(n+m), where α is the inverse Ackermann function, whose value is smaller than 4 for any practical graph. Compared to Dahlhaus’ linear time split decomposition algorithm (Dahlhaus in J. Algorithms 36(2):205–240, 2000), which does not rely on an incremental construction, our algorithm is just as fast in all but the asymptotic sense and full implementation details are given in this paper. Also, our algorithm extends to circle graph recognition, whereas no such extension is known for Dahlhaus’ algorithm. The companion paper (Gioan et al. in arXiv:1104.3284, 2011) uses our algorithm to derive the first sub-quadratic circle graph recognition algorithm.

[1]  Serafino Cicerone,et al.  Graph Classes Between Parity and Distance-hereditary Graphs , 1999, Discret. Appl. Math..

[2]  Bruno Courcelle,et al.  The monadic second-order logic of graphs XVI : Canonical graph decompositions , 2005, Log. Methods Comput. Sci..

[3]  J. Edmonds,et al.  A Combinatorial Decomposition Theory , 1980, Canadian Journal of Mathematics.

[4]  Mathieu Raffinot,et al.  A Simple Linear Time Split Decomposition Algorithm of Undirected Graphs , 2009, ArXiv.

[5]  Udi Rotics,et al.  Polynomial-time recognition of clique-width ≤3 graphs , 2012, Discret. Appl. Math..

[6]  Joost Engelfriet,et al.  Regular Description of Context-Free Graph Languages , 1996, J. Comput. Syst. Sci..

[7]  Feodor F. Dragan,et al.  LexBFS-Orderings and Power of Graphs , 1996, WG.

[8]  André Bouchet,et al.  Circle Graph Obstructions , 1994, J. Comb. Theory B.

[9]  Laurent Viennot,et al.  Lex-BFS and partition refinement, with applications to transitive orientation, interval graph recognition and consecutive ones testing , 2000, Theor. Comput. Sci..

[10]  Wen-Lian Hsu O(M*N) Algorithms for the Recognition and Isomorphism Problems on Circular-Arc Graphs , 1995, SIAM J. Comput..

[11]  Clifford Stein,et al.  Introduction to Algorithms, 2nd edition. , 2001 .

[12]  M. Golummc Algorithmic graph theory and perfect graphs , 1980 .

[13]  Jeremy P. Spinrad,et al.  Recognition of Circle Graphs , 1994, J. Algorithms.

[14]  Nicolas Trotignon,et al.  A structure theorem for graphs with no cycle with a unique chord and its consequences , 2010, J. Graph Theory.

[15]  Marc Tedder Applications of Lexicographic Breadth-first Search to Modular Decomposition, Split Decomposition, and Circle Graphs , 2011 .

[16]  F. Radermacher,et al.  Substitution Decomposition for Discrete Structures and Connections with Combinatorial Optimization , 1984 .

[17]  Jeremy P. Spinrad,et al.  An O(n²) Algorithm for Undirected Split Decompositon , 1994, J. Algorithms.

[18]  Emeric Gioan,et al.  Dynamic Distance Hereditary Graphs Using Split Decomposition , 2007, ISAAC.

[19]  Sang-il Oum,et al.  Rank-width and vertex-minors , 2005, J. Comb. Theory B.

[20]  Michel Habib,et al.  A survey of the algorithmic aspects of modular decomposition , 2009, Comput. Sci. Rev..

[21]  Xin-She Yang,et al.  Introduction to Algorithms , 2021, Nature-Inspired Optimization Algorithms.

[22]  W. T. Tutte Connectivity in graphs , 1966 .

[23]  Elias Dahlhaus,et al.  Parallel Algorithms for Hierarchical Clustering and Applications to Split Decomposition and Parity Graph Recognition , 2000, J. Algorithms.

[24]  E. Howorka A CHARACTERIZATION OF DISTANCE-HEREDITARY GRAPHS , 1977 .

[25]  M. Golumbic Algorithmic graph theory and perfect graphs , 1980 .

[26]  Emeric Gioan,et al.  Split decomposition and graph-labelled trees: characterizations and fully-dynamic algorithms for totally decomposable graphs , 2008, Discret. Appl. Math..

[27]  B. Reed,et al.  Polynomial Time Recognition of Clique-Width ≤ 3 Graphs , 2000 .

[28]  Bruno Courcelle,et al.  Handle-Rewriting Hypergraph Grammars , 1993, J. Comput. Syst. Sci..

[29]  M. Golumbic Algorithmic Graph Theory and Perfect Graphs (Annals of Discrete Mathematics, Vol 57) , 2004 .

[30]  Cyril Gavoille,et al.  Distance labeling scheme and split decomposition , 2003, Discret. Math..

[31]  Emeric Gioan,et al.  Practical and Efficient Circle Graph Recognition , 2011, Algorithmica.

[32]  David Eppstein,et al.  Delta-Confluent Drawings , 2005, Graph Drawing.

[33]  Robert E. Tarjan,et al.  Algorithmic Aspects of Vertex Elimination on Graphs , 1976, SIAM J. Comput..

[34]  Joost Engelfriet,et al.  Logical Description of Contex-Free Graph Languages , 1997, J. Comput. Syst. Sci..

[35]  Jeremy P. Spinrad,et al.  Efficient graph representations , 2003, Fields Institute monographs.

[36]  Paul D. Seymour,et al.  Recognizing Berge Graphs , 2005, Comb..

[37]  Wen-Lian Hsu,et al.  Recognizing circle graphs in polynomial time , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).

[38]  Nicolas Trotignon,et al.  On Roussel-Rubio-type lemmas and their consequences , 2011, Discret. Math..

[39]  T. Gallai Transitiv orientierbare Graphen , 1967 .

[40]  André Bouchet,et al.  Reducing prime graphs and recognizing circle graphs , 1987, Comb..

[41]  Robert E. Tarjan,et al.  Efficiency of a Good But Not Linear Set Union Algorithm , 1972, JACM.

[42]  W. Cunningham Decomposition of Directed Graphs , 1982 .

[43]  Derek G. Corneil,et al.  Lexicographic Breadth First Search - A Survey , 2004, WG.

[44]  Brijesh Dongol,et al.  Extending the theory of Owicki and Gries with a logic of progress , 2005, Log. Methods Comput. Sci..

[45]  Serafino Cicerone,et al.  On the Extension of Bipartite to Parity Graphs , 1999, Discret. Appl. Math..

[46]  Peter L. Hammer,et al.  Completely separable graphs , 1990, Discret. Appl. Math..