Photoreceptor-Based Biomarkers in AOSLO Retinal Imaging

Improved understanding of the mechanisms underlying inherited retinal degenerations has created the possibility of developing much needed treatments for these relentless, blinding diseases. However, standard clinical indicators of retinal health (such as visual acuity and visual field sensitivity) are insensitive measures of photoreceptor survival. In many retinal degenerations, significant photoreceptor loss must occur before measurable differences in visual function are observed. Thus, there is a recognized need for more sensitive outcome measures to assess therapeutic efficacy as numerous clinical trials are getting underway. Adaptive optics (AO) retinal imaging techniques correct for the monochromatic aberrations of the eye and can be used to provide nearly diffraction-limited images of the retina. Many groups routinely are using AO imaging tools to obtain in vivo images of the rod and cone photoreceptor mosaic, and it now is possible to monitor photoreceptor structure over time with single cell resolution. Highlighting recent work using AO scanning light ophthalmoscopy (AOSLO) across a range of patient populations, we review the development of photoreceptor-based metrics (e.g., density/geometry, reflectivity, and size) as candidate biomarkers. Going forward, there is a need for further development of automated tools and normative databases, with the latter facilitating the comparison of data sets across research groups and devices. Ongoing and future clinical trials for inherited retinal diseases will benefit from the improved resolution and sensitivity that multimodal AO retinal imaging affords to evaluate safety and efficacy of emerging therapies.

[1]  C. Curcio,et al.  Variability in Human Cone Topography Assessed by Adaptive Optics Scanning Laser Ophthalmoscopy. , 2015, American journal of ophthalmology.

[2]  Austin Roorda,et al.  Adaptive Optics Scanning Laser Ophthalmoscope-Based Microperimetry , 2011, Optometry and vision science : official publication of the American Academy of Optometry.

[3]  A. Roorda,et al.  High-resolution in vivo imaging of the RPE mosaic in eyes with retinal disease. , 2007, Investigative ophthalmology & visual science.

[4]  A. Roorda,et al.  High-resolution images of retinal structure in patients with choroideremia. , 2013, Investigative Ophthalmology and Visual Science.

[5]  J. Flannery,et al.  A histopathologic study of a choroideremia carrier. , 1990, Investigative ophthalmology & visual science.

[6]  Kaccie Y. Li,et al.  Intersubject variability of foveal cone photoreceptor density in relation to eye length. , 2010, Investigative ophthalmology & visual science.

[7]  Alfredo Dubra,et al.  SELECTIVE CONE PHOTORECEPTOR INJURY IN ACUTE MACULAR NEURORETINOPATHY , 2013, Retina.

[8]  M. Lombardo,et al.  Eccentricity dependent changes of density, spacing and packing arrangement of parafoveal cones , 2013, Ophthalmic & physiological optics : the journal of the British College of Ophthalmic Opticians.

[9]  Ahmadreza Baghaie,et al.  An Automated Reference Frame Selection (ARFS) Algorithm for Cone Imaging with Adaptive Optics Scanning Light Ophthalmoscopy , 2017, Translational vision science & technology.

[10]  Thomas Connor,et al.  Cone Structure in Subjects with Known Genetic Relative Risk for AMD , 2014, Optometry and vision science : official publication of the American Academy of Optometry.

[11]  Yuhua Zhang,et al.  A dual-modal retinal imaging system with adaptive optics. , 2013, Optics express.

[12]  Christopher S. Langlo,et al.  Residual Foveal Cone Structure in CNGB3-Associated Achromatopsia , 2016, Investigative ophthalmology & visual science.

[13]  Christopher S. Langlo,et al.  Assessing Photoreceptor Structure in Retinitis Pigmentosa and Usher Syndrome , 2016, Investigative ophthalmology & visual science.

[14]  D. Williams,et al.  Cone spacing and the visual resolution limit. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[15]  D R Williams,et al.  Supernormal vision and high-resolution retinal imaging through adaptive optics. , 1997, Journal of the Optical Society of America. A, Optics, image science, and vision.

[16]  Maureen Neitz,et al.  Adaptive optics retinal imaging reveals S-cone dystrophy in tritan color-vision deficiency. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[17]  William S Tuten,et al.  Dysflective cones: Visual function and cone reflectivity in long-term follow-up of acute bilateral foveolitis , 2017, American journal of ophthalmology case reports.

[18]  Jungtae Rha,et al.  Adaptive optics flood-illumination camera for high speed retinal imaging. , 2003, Optics express.

[19]  Ravi S. Jonnal,et al.  Imaging cone photoreceptors in three dimensions and in time using ultrahigh resolution optical coherence tomography with adaptive optics , 2011, Biomedical optics express.

[20]  Christopher S. Langlo,et al.  Evaluating outer segment length as a surrogate measure of peak foveal cone density , 2017, Vision Research.

[21]  William S Tuten,et al.  Normal Perceptual Sensitivity Arising From Weakly Reflective Cone Photoreceptors. , 2015, Investigative ophthalmology & visual science.

[22]  M. Lombardo,et al.  Understanding the changes of cone reflectance in adaptive optics flood illumination retinal images over three years. , 2016, Biomedical optics express.

[23]  Jungtae Rha,et al.  Variable optical activation of human cone photoreceptors visualized using a short coherence light source. , 2009, Optics letters.

[24]  Brian Vohnsen,et al.  Analysis of individual cone-photoreceptor directionality using scanning laser ophthalmoscopy , 2011, Biomedical optics express.

[25]  Maureen Neitz,et al.  Assessing retinal structure in complete congenital stationary night blindness and Oguchi disease. , 2012, American journal of ophthalmology.

[26]  A. Dubra,et al.  Reliability and Repeatability of Cone Density Measurements in Patients With Stargardt Disease and RPGR-Associated Retinopathy , 2017, Investigative ophthalmology & visual science.

[27]  Austin Roorda,et al.  Abnormal cone structure in foveal schisis cavities in X-linked retinoschisis from mutations in exon 6 of the RS1 gene. , 2011, Investigative ophthalmology & visual science.

[28]  C. Curcio,et al.  EXPLORING PHOTORECEPTOR REFLECTIVITY THROUGH MULTIMODAL IMAGING OF OUTER RETINAL TUBULATION IN ADVANCED AGE-RELATED MACULAR DEGENERATION , 2017, Retina.

[29]  Christopher S. Langlo,et al.  Correlating Photoreceptor Mosaic Structure to Clinical Findings in Stargardt Disease , 2016, Translational vision science & technology.

[30]  B. Vohnsen,et al.  Simulating human photoreceptor optics using a liquid-filled photonic crystal fiber , 2011, Biomedical optics express.

[31]  G. Hüttmann,et al.  In vivo optical imaging of physiological responses to photostimulation in human photoreceptors , 2016, Proceedings of the National Academy of Sciences.

[32]  Marco Lombardo,et al.  Influence of sampling window size and orientation on parafoveal cone packing density. , 2013, Biomedical optics express.

[33]  P. Lennie,et al.  Packing arrangement of the three cone classes in primate retina , 2001, Vision Research.

[34]  C. Curcio,et al.  Inner Segment Remodeling and Mitochondrial Translocation in Cone Photoreceptors in Age-Related Macular Degeneration With Outer Retinal Tubulation. , 2015, Investigative ophthalmology & visual science.

[35]  Travis B. Smith,et al.  Interpretation of Flood-Illuminated Adaptive Optics Images in Subjects with Retinitis Pigmentosa. , 2016, Advances in experimental medicine and biology.

[36]  Stephen A Burns,et al.  Individual variations in human cone photoreceptor packing density: variations with refractive error. , 2008, Investigative ophthalmology & visual science.

[37]  Jennifer J. Hunter,et al.  Vision science and adaptive optics, the state of the field , 2017, Vision Research.

[38]  Christopher S. Langlo,et al.  In vivo imaging of human cone photoreceptor inner segments. , 2014, Investigative ophthalmology & visual science.

[39]  Christopher S. Langlo,et al.  Repeatability of In Vivo Parafoveal Cone Density and Spacing Measurements , 2012, Optometry and vision science : official publication of the American Academy of Optometry.

[40]  D. Williams,et al.  Imaging translucent cell bodies in the living mouse retina without contrast agents. , 2015, Biomedical optics express.

[41]  B. Jones,et al.  Generation of an inbred miniature pig model of retinitis pigmentosa. , 2012, Investigative ophthalmology & visual science.

[42]  Jing Lu,et al.  High-speed adaptive optics line scan confocal retinal imaging for human eye , 2017, PloS one.

[43]  David Williams,et al.  In vivo imaging of the photoreceptor mosaic of a rod monochromat , 2008, Vision Research.

[44]  T. Hebert,et al.  Adaptive optics scanning laser ophthalmoscopy. , 2002, Optics express.

[45]  A. Dubra,et al.  In vivo dark-field imaging of the retinal pigment epithelium cell mosaic. , 2013, Biomedical optics express.

[46]  Michael Pircher,et al.  Adaptive optics SLO/OCT for 3D imaging of human photoreceptors in vivo. , 2014, Biomedical optics express.

[47]  Gang Huang,et al.  Lucky averaging: quality improvement of adaptive optics scanning laser ophthalmoscope images. , 2011, Optics letters.

[48]  Toco Y P Chui,et al.  The use of forward scatter to improve retinal vascular imaging with an adaptive optics scanning laser ophthalmoscope , 2012, Biomedical optics express.

[49]  A. Swaroop,et al.  High-resolution imaging with adaptive optics in patients with inherited retinal degeneration. , 2007, Investigative ophthalmology & visual science.

[50]  Austin Roorda,et al.  Automated identification of cone photoreceptors in adaptive optics retinal images. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[51]  David Williams,et al.  The locus of fixation and the foveal cone mosaic. , 2005, Journal of vision.

[52]  Omer P. Kocaoglu,et al.  3D Imaging of Retinal Pigment Epithelial Cells in the Living Human Retina , 2016, Investigative ophthalmology & visual science.

[53]  Richard F. Spaide,et al.  Questioning optical coherence tomography. , 2012, Ophthalmology.

[54]  Christopher S. Langlo,et al.  A lensing effect of inner retinal cysts on images of the photoreceptor mosaic. , 2014, Retina.

[55]  Lawrence C. Sincich,et al.  Resolving Single Cone Inputs to Visual Receptive Fields , 2009, Nature Neuroscience.

[56]  Fred K Chen,et al.  Semi-automated identification of cones in the human retina using circle Hough transform. , 2015, Biomedical optics express.

[57]  S. Sadda,et al.  Proposed lexicon for anatomic landmarks in normal posterior segment spectral-domain optical coherence tomography: the IN•OCT consensus. , 2014, Ophthalmology.

[58]  C. Curcio,et al.  Packing geometry of human cone photoreceptors: variation with eccentricity and evidence for local anisotropy. , 1992, Visual neuroscience.

[59]  A. Dubra,et al.  Photoreceptor structure and function in patients with congenital achromatopsia. , 2011, Investigative ophthalmology & visual science.

[60]  E. Berson Long-term visual prognoses in patients with retinitis pigmentosa: the Ludwig von Sallmann lecture. , 2007, Experimental eye research.

[61]  Elaine M. Wells-Gray,et al.  Variation in rod and cone density from the fovea to the mid-periphery in healthy human retinas using adaptive optics scanning laser ophthalmoscopy , 2016, Eye.

[62]  M. Bidaut Garnier,et al.  Reliability of cone counts using an adaptive optics retinal camera , 2014, Clinical & experimental ophthalmology.

[63]  A. Roorda,et al.  Observation of cone and rod photoreceptors in normal subjects and patients using a new generation adaptive optics scanning laser ophthalmoscope , 2011, Biomedical optics express.

[64]  Dennis P. Han,et al.  Spectral-domain optical coherence tomography and adaptive optics may detect hydroxychloroquine retinal toxicity before symptomatic vision loss. , 2009, Transactions of the American Ophthalmological Society.

[65]  S A Burns,et al.  Cone spacing and waveguide properties from cone directionality measurements. , 1999, Journal of the Optical Society of America. A, Optics, image science, and vision.

[66]  David Williams,et al.  The reflectance of single cones in the living human eye. , 2002, Investigative ophthalmology & visual science.

[67]  Christopher S. Langlo,et al.  Visual Psychophysics and Physiological Optics Genotype-Dependent Variability in Residual Cone Structure in Achromatopsia : Toward Developing Metrics for Assessing Cone Health , 2014 .

[68]  Ashavini M. Pavaskar,et al.  Spatial and temporal variation of rod photoreceptor reflectance in the human retina , 2011, Biomedical optics express.

[69]  K. Rohrschneider Determination of the location of the fovea on the fundus. , 2004, Investigative ophthalmology & visual science.

[70]  Anupam K. Garg,et al.  The reliability of parafoveal cone density measurements , 2014, British Journal of Ophthalmology.

[71]  Sina Farsiu,et al.  Handheld simultaneous scanning laser ophthalmoscopy and optical coherence tomography system. , 2013, Biomedical optics express.

[72]  Austin Roorda,et al.  Mapping the Perceptual Grain of the Human Retina , 2014, The Journal of Neuroscience.

[73]  Phillip Bedggood,et al.  Analysis of contrast and motion signals generated by human blood constituents in capillary flow. , 2014, Optics letters.

[74]  A. Roorda,et al.  Repeatability of Cone Spacing Measures in Eyes With Inherited Retinal Degenerations. , 2015, Investigative ophthalmology & visual science.

[75]  A. Roorda,et al.  Cone structure imaged with adaptive optics scanning laser ophthalmoscopy in eyes with nonneovascular age-related macular degeneration. , 2013, Investigative ophthalmology & visual science.

[76]  Donald T. Miller,et al.  In vivo functional imaging of human cone photoreceptors. , 2007, Optics express.

[77]  Omer P. Kocaoglu,et al.  Phase-sensitive imaging of the outer retina using optical coherence tomography and adaptive optics , 2011, Biomedical optics express.

[78]  M. Lombardo,et al.  Technical Factors Influencing Cone Packing Density Estimates in Adaptive Optics Flood Illuminated Retinal Images , 2014, PloS one.

[79]  Stephen A. Burns,et al.  Distribution differences of macular cones measured by AOSLO: Variation in slope from fovea to periphery more pronounced than differences in total cones , 2017, Vision Research.

[80]  V. Greenstein,et al.  A study of factors affecting the human cone photoreceptor density measured by adaptive optics scanning laser ophthalmoscope. , 2013, Experimental eye research.

[81]  B. Lujan,et al.  Correlation of outer nuclear layer thickness with cone density values in patients with retinitis pigmentosa and healthy subjects. , 2014, Investigative ophthalmology & visual science.

[82]  A. Roorda,et al.  Characterizing the Human Cone Photoreceptor Mosaic via Dynamic Photopigment Densitometry , 2015, PloS one.

[83]  T. Aleman,et al.  Identifying photoreceptors in blind eyes caused by RPE65 mutations: Prerequisite for human gene therapy success , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[84]  Michel Paques,et al.  CONE DENSITY LOSS ON ADAPTIVE OPTICS IN EARLY MACULAR TELANGIECTASIA TYPE 2 , 2015, Retina.

[85]  David Williams,et al.  Noninvasive imaging of the human rod photoreceptor mosaic using a confocal adaptive optics scanning ophthalmoscope , 2011, Biomedical optics express.

[86]  David R Williams,et al.  Cone and rod loss in Stargardt disease revealed by adaptive optics scanning light ophthalmoscopy. , 2015, JAMA ophthalmology.

[87]  J. Bennett,et al.  Visual Psychophysics and Physiological Optics High-Resolution Adaptive Optics Retinal Imaging of Cellular Structure in Choroideremia , 2014 .

[88]  A. Roorda,et al.  Adaptive optics ophthalmoscopy. , 2015, Annual review of vision science.

[89]  Jessica I W Morgan,et al.  The fundus photo has met its match: optical coherence tomography and adaptive optics ophthalmoscopy are here to stay , 2016, Ophthalmic & physiological optics : the journal of the British College of Ophthalmic Opticians.

[90]  Christopher S. Langlo,et al.  Noninvasive imaging of the thirteen-lined ground squirrel photoreceptor mosaic , 2016, Visual Neuroscience.

[91]  C. Curcio,et al.  Photoreceptor loss in age-related macular degeneration. , 1996, Investigative ophthalmology & visual science.

[92]  Austin Roorda,et al.  Outer retinal structure in patients with acute zonal occult outer retinopathy. , 2012, American journal of ophthalmology.

[93]  T. Fujikado,et al.  Slow Cone Reflectance Changes during Bleaching Determined by Adaptive Optics Scanning Laser Ophthalmoscope in Living Human Eyes , 2015, PloS one.

[94]  P K Ahnelt,et al.  Iso-orientation areas in the foveal cone mosaic , 1990, Visual Neuroscience.

[95]  Omer P. Kocaoglu,et al.  The cellular origins of the outer retinal bands in optical coherence tomography images. , 2014, Investigative ophthalmology & visual science.

[96]  Sina Farsiu,et al.  Automatic detection of cone photoreceptors in split detector adaptive optics scanning light ophthalmoscope images , 2016, Biomedical optics express.

[97]  A. Dubra,et al.  In vivo imaging of human retinal microvasculature using adaptive optics scanning light ophthalmoscope fluorescein angiography , 2013, Biomedical optics express.

[98]  Zhuolin Liu,et al.  Modal content of living human cone photoreceptors. , 2015, Biomedical optics express.

[99]  Jennifer J. Hunter,et al.  Imaging individual neurons in the retinal ganglion cell layer of the living eye , 2017, Proceedings of the National Academy of Sciences.

[100]  G. Fishman,et al.  Rate of visual field loss in retinitis pigmentosa. , 1997, Ophthalmology.

[101]  Christopher S. Langlo,et al.  ASSESSING PHOTORECEPTOR STRUCTURE ASSOCIATED WITH ELLIPSOID ZONE DISRUPTIONS VISUALIZED WITH OPTICAL COHERENCE TOMOGRAPHY , 2016, Retina.

[102]  Joseph A. Izatt,et al.  Automatic cone photoreceptor segmentation using graph theory and dynamic programming , 2013, Biomedical optics express.

[103]  Jessica I. Wolfing,et al.  Retinal microscotomas revealed with adaptive-optics microflashes. , 2006, Investigative ophthalmology & visual science.

[104]  Milan Sonka,et al.  Human photoreceptor outer segments shorten during light adaptation. , 2013, Investigative ophthalmology & visual science.

[105]  Anupam K. Garg,et al.  Measuring cone density in a Japanese macaque (Macaca fuscata) model of age-related macular degeneration with commercially available adaptive optics. , 2014, Advances in experimental medicine and biology.

[106]  A. Milam,et al.  Evaluation of retinal photoreceptors and pigment epithelium in a female carrier of choroideremia. , 2001, Ophthalmology.

[107]  Austin Roorda,et al.  Adaptive optics scanning laser ophthalmoscopy images in a family with the mitochondrial DNA T8993C mutation. , 2009, Investigative ophthalmology & visual science.

[108]  Lynn W. Sun,et al.  Multimodal Imaging of Photoreceptor Structure in Choroideremia , 2016, PloS one.

[109]  Joseph Carroll,et al.  Methods for investigating the local spatial anisotropy and the preferred orientation of cones in adaptive optics retinal images , 2016, Visual Neuroscience.

[110]  A. Fawzi,et al.  Adaptive Optics Reveals Photoreceptor Abnormalities in Diabetic Macular Ischemia , 2017, PloS one.

[111]  Deborah M. Costakos,et al.  Relationship between foveal cone specialization and pit morphology in albinism. , 2014, Investigative ophthalmology & visual science.

[112]  John S Werner,et al.  Photoreceptor counting and montaging of en-face retinal images from an adaptive optics fundus camera. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[113]  A. Dubra,et al.  OUTER RETINAL STRUCTURE AFTER CLOSED-GLOBE BLUNT OCULAR TRAUMA , 2014, Retina.

[114]  Alfredo Dubra,et al.  Effects of Intraframe Distortion on Measures of Cone Mosaic Geometry from Adaptive Optics Scanning Light Ophthalmoscopy , 2016, Translational vision science & technology.

[115]  Omer P. Kocaoglu,et al.  A Review of Adaptive Optics Optical Coherence Tomography: Technical Advances, Scientific Applications, and the Future , 2016, Investigative ophthalmology & visual science.

[116]  Jerome Sherman,et al.  New insights into Stargardt disease with multimodal imaging. , 2015, Ophthalmic surgery, lasers & imaging retina.

[117]  A Roorda,et al.  Advances in imaging of Stargardt disease. , 2010, Advances in experimental medicine and biology.

[118]  Alfredo Dubra,et al.  Assessing the spatial relationship between fixation and foveal specializations , 2017, Vision Research.

[119]  K. Tsunoda,et al.  In vivo imaging of a cone mosaic in a patient with achromatopsia associated with a GNAT2 variant , 2016, Japanese Journal of Ophthalmology.

[120]  S. Ourselin,et al.  Unsupervised identification of cone photoreceptors in non-confocal adaptive optics scanning light ophthalmoscope images. , 2017, Biomedical optics express.

[121]  J. Horton,et al.  Spontaneous Regeneration of Human Photoreceptor Outer Segments , 2015, Scientific Reports.

[122]  Donald T. Miller,et al.  Imaging outer segment renewal in living human cone photoreceptors. , 2010, Optics express.

[123]  C. Kulcsár,et al.  Meaning of visualizing retinal cone mosaic on adaptive optics images. , 2015, American journal of ophthalmology.

[124]  A. Hendrickson,et al.  Human photoreceptor topography , 1990, The Journal of comparative neurology.

[125]  Jessica I. W. Morgan,et al.  In vivo autofluorescence imaging of the human and macaque retinal pigment epithelial cell mosaic. , 2009, Investigative ophthalmology & visual science.

[126]  Marco Lombardo,et al.  ADAPTIVE OPTICS IMAGING OF PARAFOVEAL CONES IN TYPE 1 DIABETES , 2014, Retina.

[127]  M. Stirpe,et al.  INTEROCULAR SYMMETRY OF PARAFOVEAL PHOTORECEPTOR CONE DENSITY DISTRIBUTION , 2013, Retina.

[128]  N J Coletta,et al.  Psychophysical estimate of extrafoveal cone spacing. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[129]  William S Tuten,et al.  The elementary representation of spatial and color vision in the human retina , 2016, Science Advances.

[130]  Alfredo Dubra,et al.  A fully automatic framework for cell segmentation on non-confocal adaptive optics images , 2016, SPIE Medical Imaging.

[131]  Toco Y P Chui,et al.  Variation of cone photoreceptor packing density with retinal eccentricity and age. , 2011, Investigative ophthalmology & visual science.

[132]  B. Vohnsen Directional sensitivity of the retina: A layered scattering model of outer-segment photoreceptor pigments. , 2014, Biomedical optics express.

[133]  A. V. Cideciyan,et al.  OUTCOME MEASURES AND THEIR APPLICATION IN CLINICAL TRIALS FOR RETINAL DEGENERATIVE DISEASES: Outline, Review, and Perspective , 2005, Retina.

[134]  Jay M. Enoch,et al.  Vertebrate photoreceptor optics , 1981 .

[135]  Elise W. Dees,et al.  Variability in parafoveal cone mosaic in normal trichromatic individuals , 2011, Biomedical optics express.

[136]  S. Ooto,et al.  CIRCINATE PARTITION-LIKE FINDINGS ON CONE MOSAIC IMAGED BY ADAPTIVE OPTICS SCANNING LASER OPHTHALMOSCOPY IN EYES WITH INNER NUCLEAR LAYER MICROCYSTIC CHANGES. , 2017, Retinal cases & brief reports.

[137]  Christopher S. Langlo,et al.  Reliability and Repeatability of Cone Density Measurements in Patients with Congenital Achromatopsia. , 2016, Advances in experimental medicine and biology.

[138]  David Williams,et al.  Optical fiber properties of individual human cones. , 2002, Journal of vision.

[139]  Stephen A. Burns,et al.  Multiply scattered light tomography and confocal imaging: detecting neovascularization in age-related macular degeneration. , 2000, Optics express.

[140]  Julia S. Kroisamer,et al.  Temporal changes of human cone photoreceptors observed in vivo with SLO/OCT , 2010, Biomedical optics express.

[141]  A. Milam,et al.  Histopathology of the human retina in retinitis pigmentosa. , 1998, Progress in retinal and eye research.

[142]  Austin Roorda,et al.  High-speed, image-based eye tracking with a scanning laser ophthalmoscope , 2012, Biomedical optics express.

[143]  Stephen A. Burns,et al.  The organization of the cone photoreceptor mosaic measured in the living human retina , 2017, Vision Research.

[144]  M. Wilk,et al.  Imaging the adult zebrafish cone mosaic using optical coherence tomography , 2016, Visual Neuroscience.

[145]  Sina Farsiu,et al.  Open source software for automatic detection of cone photoreceptors in adaptive optics ophthalmoscopy using convolutional neural networks , 2017, Scientific Reports.

[146]  M. Lombardo,et al.  Multimodal Approach to Monitoring and Investigating Cone Structure and Function in an Inherited Macular Dystrophy. , 2015, American journal of ophthalmology.

[147]  Austin Roorda,et al.  Retinal motion estimation in adaptive optics scanning laser ophthalmoscopy. , 2006, Optics express.

[148]  J. Yellott Spectral analysis of spatial sampling by photoreceptors: Topological disorder prevents aliasing , 1982, Vision Research.

[149]  Robert J Zawadzki,et al.  Multimodal assessment of microscopic morphology and retinal function in patients with geographic atrophy. , 2013, Investigative ophthalmology & visual science.

[150]  S. Tarima,et al.  Evaluating Descriptive Metrics of the Human Cone Mosaic , 2016, Investigative ophthalmology & visual science.

[151]  F. Ferris,et al.  Report from the NEI/FDA Ophthalmic Clinical Trial Design and Endpoints Symposium. , 2008, Investigative ophthalmology & visual science.

[152]  Christopher S. Langlo,et al.  REPEATABILITY AND LONGITUDINAL ASSESSMENT OF FOVEAL CONE STRUCTURE IN CNGB3-ASSOCIATED ACHROMATOPSIA , 2017, Retina.

[153]  J. Carroll,et al.  Outer segment length in different best disease genotypes--reply. , 2014, JAMA ophthalmology.

[154]  Nicusor Iftimia,et al.  Compact adaptive optics line scanning ophthalmoscope. , 2009, Optics express.

[155]  A. Roorda,et al.  Intrinsic signals from human cone photoreceptors. , 2008, Investigative ophthalmology & visual science.

[156]  C. K. Sheehy,et al.  Active eye-tracking for an adaptive optics scanning laser ophthalmoscope. , 2015, Biomedical optics express.

[157]  Mark E Pennesi,et al.  Assessment of Different Sampling Methods for Measuring and Representing Macular Cone Density Using Flood-Illuminated Adaptive Optics. , 2015, Investigative ophthalmology & visual science.

[158]  Austin Roorda,et al.  Benefits of retinal image motion at the limits of spatial vision , 2017, Journal of vision.

[159]  Katherine E. Talcott,et al.  Longitudinal study of cone photoreceptors during retinal degeneration and in response to ciliary neurotrophic factor treatment. , 2011, Investigative ophthalmology & visual science.

[160]  David R. Williams,et al.  In Vivo Two-Photon Fluorescence Kinetics of Primate Rods and Cones , 2016, Investigative ophthalmology & visual science.

[161]  Geoffrey P Lewis,et al.  Drusen-associated degeneration in the retina. , 2003, Investigative ophthalmology & visual science.

[162]  David Williams,et al.  Adaptive optics retinal imaging in the living mouse eye , 2012, Biomedical optics express.

[163]  Nicholas Devaney,et al.  Performance Analysis of Cone Detection Algorithms , 2015, Journal of the Optical Society of America. A, Optics, image science, and vision.

[164]  Panos Liatsis,et al.  Hessian-LoG filtering for enhancement and detection of photoreceptor cells in adaptive optics retinal images. , 2016, Journal of the Optical Society of America. A, Optics, image science, and vision.

[165]  K Bailey Freund,et al.  Outer retinal tubulation: a novel optical coherence tomography finding. , 2009, Archives of ophthalmology.

[166]  William S Tuten,et al.  Adaptive optics microperimetry and OCT images show preserved function and recovery of cone visibility in macular telangiectasia type 2 retinal lesions. , 2015, Investigative ophthalmology & visual science.

[167]  John S Werner,et al.  In vivo imaging of the photoreceptor mosaic in retinal dystrophies and correlations with visual function. , 2006, Investigative ophthalmology & visual science.

[168]  A. Roorda,et al.  Cone structure in patients with usher syndrome type III and mutations in the Clarin 1 gene. , 2013, JAMA ophthalmology.

[169]  A. Dubra,et al.  Subclinical photoreceptor disruption in response to severe head trauma. , 2012, Archives of ophthalmology.

[170]  Kenneth R. Sloan,et al.  Packing geometry of human cone photoreceptors: variations with eccentricity and evidence for local anisotropy , 1991, Electronic Imaging.

[171]  A. Roorda,et al.  Visual Psychophysics and Physiological Optics Relationship Between Foveal Cone Structure and Clinical Measures of Visual Function in Patients With Inherited Retinal Degenerations , 2013 .

[172]  Christopher S. Langlo,et al.  Automatic detection of modal spacing (Yellott's ring) in adaptive optics scanning light ophthalmoscope images , 2013, Ophthalmic & physiological optics : the journal of the British College of Ophthalmic Opticians.

[173]  F. Amthor,et al.  High spatiotemporal resolution imaging of fast intrinsic optical signals activated by retinal flicker stimulation , 2010, Optics express.

[174]  M. Parravano,et al.  Investigation of Adaptive Optics Imaging Biomarkers for Detecting Pathological Changes of the Cone Mosaic in Patients with Type 1 Diabetes Mellitus , 2016, PloS one.