Termination Analysis for Functional Programs

Proving termination is a central problem in software development and formal methods for termination analysis are essential for program verification. However, since the halting problem is undecidable and totality of functions is not even semi-decidable, there is no procedure to prove or disprove the termination of all algorithms.

[1]  Peter Henderson Functional Programming , 1980 .

[2]  Deepak Kapur,et al.  An Overview of Rewrite Rule Laboratory (RRL) , 1989, RTA.

[3]  Nachum Dershowitz,et al.  Termination of Rewriting , 1987, J. Symb. Comput..

[4]  Christoph Walther,et al.  Mathematical induction , 1994, Handbook of Logic in Artificial Intelligence and Logic Programming.

[5]  J. Urgen Giesl,et al.  Termination Analysis for Partial Functions ? , 1996 .

[6]  Jürgen Giesl,et al.  Termination of Constructor Systems , 1996, RTA.

[7]  Dieter Hutter,et al.  INKA: The Next Generation , 1996, CADE.

[8]  Jeffrey D. Ullman,et al.  Efficient tests for top-down termination of logical rules , 1988, JACM.

[9]  Frank van Harmelen,et al.  The Oyster-Clam System , 1990, CADE.

[10]  Flemming Nielson,et al.  Operational Semantics of Termination Types , 1996, Nord. J. Comput..

[11]  Christoph Walther,et al.  Argument-Bounded Algorithms as a Basis for Automated Termination Proofs , 1988, CADE.

[12]  Robert S. Boyer,et al.  Computational Logic , 1990, ESPRIT Basic Research Series.

[13]  Joachim Steinbach,et al.  Automatic Termination Proofs With Transformation Orderings , 1995, RTA.

[14]  W. Böge,et al.  Quantifier Elimination for Real Closed Fields , 1985, AAECC.

[15]  Dieter Hutter,et al.  The Karlsruhe Induction Theorem Proving System , 1986, CADE.

[16]  Jürgen Giesl,et al.  Termination Analysis for Functional Programs using Term Orderings , 1995, SAS.

[17]  George E. Collins,et al.  Quantifier elimination for real closed fields by cylindrical algebraic decomposition , 1975 .

[18]  Jürgen Giesl,et al.  Modularity of Termination Using Dependency pairs , 1998, RTA.

[19]  Christoph Walther,et al.  On Proving the Termination of Algorithms by Machine , 1994, Artif. Intell..

[20]  Hans Zantema,et al.  Termination of Term Rewriting by Semantic Labelling , 1995, Fundam. Informaticae.

[21]  Christoph Walther,et al.  Automatisierung von Terminierungsbeweisen , 1991 .

[22]  Manfred Schmidt-Schauß,et al.  TEA: Automatically Proving Termination of Programs in a Non-strict Higher-Order Functional Language , 1997, SAS.

[23]  David A. McAllester,et al.  Walther Recursion , 1996, CADE.

[24]  Danny De Schreye,et al.  Termination of Logic Programs: The Never-Ending Story , 1994, J. Log. Program..

[25]  Jürgen Giesl Automatisierung von Terminierungsbeweisen für rekursiv definierte Algorithmen , 1995, DISKI.

[26]  Jürgen Giesl,et al.  Generating Polynomial Orderings for Termination Proofs , 1995, RTA.

[27]  Jürgen Giesl,et al.  Proving Innermost Normalisation Automatically , 1997, RTA.

[28]  Jürgen Brauburger,et al.  Automatic Termination Analysis for Partial Functions Using Polynomial Orderings , 1997, SAS.

[29]  Hantao Zhang,et al.  An overview of Rewrite Rule Laboratory (RRL) , 1995 .

[30]  Jürgen Giesl Automated Termination Proofs with Measure Functions , 1995, KI.

[31]  Jürgen Giesl,et al.  Automatically Proving Termination Where Simplification Orderings Fail , 1997, TAPSOFT.

[32]  Claus Sengler Induction on non-freely generated data types , 1997, DISKI.

[33]  Claus Sengler,et al.  Termination of Algorithms over Non-freely Generated Data Types , 1996, CADE.

[34]  Lutz Plümer Termination Proofs for Logic Programs , 1990, Lecture Notes in Computer Science.

[35]  Joachim Steinbach,et al.  Simplification Orderings: Histrory of Results , 1995, Fundam. Informaticae.