Termination Analysis for Functional Programs
暂无分享,去创建一个
Jürgen Giesl | Christoph Walther | Jürgen Brauburger | J. Giesl | Christoph Walther | Jürgen Brauburger
[1] Peter Henderson. Functional Programming , 1980 .
[2] Deepak Kapur,et al. An Overview of Rewrite Rule Laboratory (RRL) , 1989, RTA.
[3] Nachum Dershowitz,et al. Termination of Rewriting , 1987, J. Symb. Comput..
[4] Christoph Walther,et al. Mathematical induction , 1994, Handbook of Logic in Artificial Intelligence and Logic Programming.
[5] J. Urgen Giesl,et al. Termination Analysis for Partial Functions ? , 1996 .
[6] Jürgen Giesl,et al. Termination of Constructor Systems , 1996, RTA.
[7] Dieter Hutter,et al. INKA: The Next Generation , 1996, CADE.
[8] Jeffrey D. Ullman,et al. Efficient tests for top-down termination of logical rules , 1988, JACM.
[9] Frank van Harmelen,et al. The Oyster-Clam System , 1990, CADE.
[10] Flemming Nielson,et al. Operational Semantics of Termination Types , 1996, Nord. J. Comput..
[11] Christoph Walther,et al. Argument-Bounded Algorithms as a Basis for Automated Termination Proofs , 1988, CADE.
[12] Robert S. Boyer,et al. Computational Logic , 1990, ESPRIT Basic Research Series.
[13] Joachim Steinbach,et al. Automatic Termination Proofs With Transformation Orderings , 1995, RTA.
[14] W. Böge,et al. Quantifier Elimination for Real Closed Fields , 1985, AAECC.
[15] Dieter Hutter,et al. The Karlsruhe Induction Theorem Proving System , 1986, CADE.
[16] Jürgen Giesl,et al. Termination Analysis for Functional Programs using Term Orderings , 1995, SAS.
[17] George E. Collins,et al. Quantifier elimination for real closed fields by cylindrical algebraic decomposition , 1975 .
[18] Jürgen Giesl,et al. Modularity of Termination Using Dependency pairs , 1998, RTA.
[19] Christoph Walther,et al. On Proving the Termination of Algorithms by Machine , 1994, Artif. Intell..
[20] Hans Zantema,et al. Termination of Term Rewriting by Semantic Labelling , 1995, Fundam. Informaticae.
[21] Christoph Walther,et al. Automatisierung von Terminierungsbeweisen , 1991 .
[22] Manfred Schmidt-Schauß,et al. TEA: Automatically Proving Termination of Programs in a Non-strict Higher-Order Functional Language , 1997, SAS.
[23] David A. McAllester,et al. Walther Recursion , 1996, CADE.
[24] Danny De Schreye,et al. Termination of Logic Programs: The Never-Ending Story , 1994, J. Log. Program..
[25] Jürgen Giesl. Automatisierung von Terminierungsbeweisen für rekursiv definierte Algorithmen , 1995, DISKI.
[26] Jürgen Giesl,et al. Generating Polynomial Orderings for Termination Proofs , 1995, RTA.
[27] Jürgen Giesl,et al. Proving Innermost Normalisation Automatically , 1997, RTA.
[28] Jürgen Brauburger,et al. Automatic Termination Analysis for Partial Functions Using Polynomial Orderings , 1997, SAS.
[29] Hantao Zhang,et al. An overview of Rewrite Rule Laboratory (RRL) , 1995 .
[30] Jürgen Giesl. Automated Termination Proofs with Measure Functions , 1995, KI.
[31] Jürgen Giesl,et al. Automatically Proving Termination Where Simplification Orderings Fail , 1997, TAPSOFT.
[32] Claus Sengler. Induction on non-freely generated data types , 1997, DISKI.
[33] Claus Sengler,et al. Termination of Algorithms over Non-freely Generated Data Types , 1996, CADE.
[34] Lutz Plümer. Termination Proofs for Logic Programs , 1990, Lecture Notes in Computer Science.
[35] Joachim Steinbach,et al. Simplification Orderings: Histrory of Results , 1995, Fundam. Informaticae.