Marginal Space Learning for Medical Image Analysis

[1]  Dorin Comaniciu,et al.  Multi-Part Modeling and Segmentation of Left Atrium in C-Arm CT for Image-Guided Ablation of Atrial Fibrillation , 2014, IEEE Transactions on Medical Imaging.

[2]  Dorin Comaniciu,et al.  Spine detection in CT and MR using iterated marginal space learning , 2013, Medical Image Anal..

[3]  Dong Yang,et al.  Graph cuts based left atrium segmentation refinement and right middle pulmonary vein extraction in C-arm CT , 2013, Medical Imaging.

[4]  Gernot Brockmann,et al.  Automatic Aorta Segmentation and Valve Landmark Detection in C-Arm CT for Transcatheter Aortic Valve Implantation , 2012, IEEE Transactions on Medical Imaging.

[5]  Yefeng Zheng,et al.  Segmentation and removal of pulmonary arteries, veins and left atrial appendage for visualizing coronary and bypass arteries , 2012, 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[6]  Chao Lu,et al.  A learning based deformable template matching method for automatic rib centerline extraction and labeling in CT images , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[7]  Dorin Comaniciu,et al.  Fast tracking of catheters in 2D fluoroscopic images using an integrated CPU-GPU framework , 2012, 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI).

[8]  Dorin Comaniciu,et al.  Precise segmentation of the left atrium in C-arm CT volumes with applications to atrial fibrillation ablation , 2012, 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI).

[9]  Dorin Comaniciu,et al.  Efficient Detection of Native and Bypass Coronary Ostia in Cardiac CT Volumes: Anatomical vs. Pathological Structures , 2011, MICCAI.

[10]  Dorin Comaniciu,et al.  Multi-part Left Atrium Modeling and Segmentation in C-Arm CT Volumes for Atrial Fibrillation Ablation , 2011, MICCAI.

[11]  Dorin Comaniciu,et al.  Learning-based hypothesis fusion for robust catheter tracking in 2D X-ray fluoroscopy , 2011, CVPR 2011.

[12]  Yang Wang,et al.  Prediction Based Collaborative Trackers (PCT): A Robust and Accurate Approach Toward 3D Medical Object Tracking , 2011, IEEE Transactions on Medical Imaging.

[13]  Dorin Comaniciu,et al.  Detection of 3D Spinal Geometry Using Iterated Marginal Space Learning , 2010, MCV.

[14]  Gernot Brockmann,et al.  Automatic Aorta Segmentation and Valve Landmark Detection in C-Arm CT: Application to Aortic Valve Implantation , 2010, MICCAI.

[15]  Jochen Peters,et al.  Patient Specific Models for Planning and Guidance of Minimally Invasive Aortic Valve Implantation , 2010, MICCAI.

[16]  Daniel Rueckert,et al.  Automatic Segmentation of Left Atrial Geometry from Contrast-Enhanced Magnetic Resonance Images Using a Probabilistic Atlas , 2010, STACOM/CESC.

[17]  Dorin Comaniciu,et al.  Fast and Automatic Heart Isolation in 3D CT Volumes: Optimal Shape Initialization , 2010, MLMI.

[18]  Shaohua Kevin Zhou,et al.  Automatic landmark detection and scan range delimitation for topogram images using hierarchical network , 2010, Medical Imaging.

[19]  Olivier Ecabert,et al.  Automatic Segmentation of Rotational X-Ray Images for Anatomic Intra-Procedural Surface Generation in Atrial Fibrillation Ablation Procedures , 2010, IEEE Transactions on Medical Imaging.

[20]  G. Naccarelli,et al.  Increasing prevalence of atrial fibrillation and flutter in the United States. , 2009, The American journal of cardiology.

[21]  Roman Goldenberg,et al.  Automated computer-aided stenosis detection at coronary CT angiography: initial experience , 2009, European Radiology.

[22]  Yan Kang,et al.  Fast and Automatic Segmentation of Ascending Aorta in MSCT Volume Data , 2009, 2009 2nd International Congress on Image and Signal Processing.

[23]  Gustavo Carneiro,et al.  Fast and Robust 3-D MRI Brain Structure Segmentation , 2009, MICCAI.

[24]  Margaret C Fang,et al.  Trends in catheter ablation for atrial fibrillation in the United States. , 2009, Journal of hospital medicine.

[25]  H. Forman,et al.  Workload of radiologists in United States in 2006-2007 and trends since 1991-1992. , 2009, Radiology.

[26]  Dorin Comaniciu,et al.  Marginal Space Learning for Efficient Detection of 2D/3D Anatomical Structures in Medical Images , 2009, IPMI.

[27]  D. Comaniciu,et al.  Robust object detection using marginal space learning and ranking-based multi-detector aggregation: Application to left ventricle detection in 2D MRI images , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[28]  Dorin Comaniciu,et al.  Constrained marginal space learning for efficient 3D anatomical structure detection in medical images , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[29]  Milan Sonka,et al.  Congenital aortic disease: 4D magnetic resonance segmentation and quantitative analysis , 2009, Medical Image Anal..

[30]  Dorin Comaniciu,et al.  Automatic left ventricle detection in MRI images using marginal space learning and component-based voting , 2009, Medical Imaging.

[31]  Yiqiang Zhan,et al.  Robust algorithms for anatomic plane primitive detection in MR , 2009, Medical Imaging.

[32]  Dorin Comaniciu,et al.  Left ventricle endocardium segmentation for cardiac CT volumes using an optimal smooth surface , 2009, Medical Imaging.

[33]  B. Ginneken,et al.  3D Segmentation in the Clinic: A Grand Challenge , 2007 .

[34]  Dorin Comaniciu,et al.  Four-Chamber Heart Modeling and Automatic Segmentation for 3-D Cardiac CT Volumes Using Marginal Space Learning and Steerable Features , 2008, IEEE Transactions on Medical Imaging.

[35]  Örjan Smedby,et al.  An Automatic Seeding Method For Coronary Artery Segmentation and Skeletonization in CTA , 2008, The MIDAS Journal.

[36]  Hüseyin Tek Automatic Coronary Tree Modeling , 2008, The MIDAS Journal.

[37]  Dorin Comaniciu,et al.  3D ultrasound tracking of the left ventricle using one-step forward prediction and data fusion of collaborative trackers , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[38]  Dorin Comaniciu,et al.  Hierarchical, learning-based automatic liver segmentation , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[39]  Ram Nevatia,et al.  Detection and Segmentation of Multiple, Partially Occluded Objects by Grouping, Merging, Assigning Part Detection Responses , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[40]  Dorin Comaniciu,et al.  A fast and accurate tracking algorithm of left ventricles in 3D echocardiography , 2008, 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[41]  Daniel Rueckert,et al.  Left atrium segmentation for atrial fibrillation ablation , 2008, SPIE Medical Imaging.

[42]  Dorin Comaniciu,et al.  Four-chamber heart modeling and automatic segmentation for 3D cardiac CT volumes , 2008, SPIE Medical Imaging.

[43]  Dorin Comaniciu,et al.  Fast Automatic Heart Chamber Segmentation from 3D CT Data Using Marginal Space Learning and Steerable Features , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[44]  Yen-Wei Chen,et al.  Automated Segmentation of the Liver from 3D CT Images Using Probabilistic Atlas and Multi-level Statistical Shape Model , 2007, MICCAI.

[45]  Larry S. Davis,et al.  Bilattice-based Logical Reasoning for Human Detection , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[46]  Dorin Comaniciu,et al.  Example Based Non-rigid Shape Detection , 2006, ECCV.

[47]  Norbert Rahn,et al.  Automatic Left Atrium Segmentation by Cutting the Blood Pool at Narrowings , 2005, MICCAI.

[48]  Leo Grady,et al.  A multilevel banded graph cuts method for fast image segmentation , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[49]  Zhuowen Tu,et al.  Probabilistic boosting-tree: learning discriminative models for classification, recognition, and clustering , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[50]  Charles F. F. Karney Quaternions in molecular modeling. , 2005, Journal of molecular graphics & modelling.

[51]  Dorin Comaniciu,et al.  Database-guided segmentation of anatomical structures with complex appearance , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[52]  Cristian Lorenz,et al.  Multi-surface Cardiac Modelling, Segmentation, and Tracking , 2005, FIMH.

[53]  James J. Kuffner,et al.  Effective sampling and distance metrics for 3D rigid body path planning , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[54]  H Page McAdams,et al.  Variations in pulmonary venous drainage to the left atrium: implications for radiofrequency ablation. , 2004, Radiology.

[55]  Carl-Fredrik Westin,et al.  Multiscale segmentation of the aorta in 3D ultrasound images , 2003, Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE Cat. No.03CH37439).

[56]  Daniel Cremers,et al.  Diffusion Snakes: Introducing Statistical Shape Knowledge into the Mumford-Shah Functional , 2002, International Journal of Computer Vision.

[57]  Paul A. Viola,et al.  Rapid object detection using a boosted cascade of simple features , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[58]  Marie-Pierre Jolly,et al.  Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[59]  C. Taylor,et al.  Active Appearance Models , 2001, ECCV.

[60]  Sven Loncaric,et al.  3-D deformable model for aortic aneurysm segmentation from CT images , 2000, Proceedings of the 22nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (Cat. No.00CH37143).

[61]  Yoram Singer,et al.  Improved Boosting Algorithms Using Confidence-rated Predictions , 1998, COLT' 98.

[62]  Daniel Rueckert,et al.  Automatic tracking of the aorta in cardiovascular MR images using deformable models , 1997, IEEE Transactions on Medical Imaging.

[63]  Gene H. Golub,et al.  Optimal Surface Smoothing as Filter Design , 1996, ECCV.

[64]  Timothy F. Cootes,et al.  Active Shape Models-Their Training and Application , 1995, Comput. Vis. Image Underst..

[65]  Karel Zikan,et al.  A note on averaging rotations , 1993, Proceedings of IEEE Virtual Reality Annual International Symposium.

[66]  P. Wolf,et al.  Atrial fibrillation as an independent risk factor for stroke: the Framingham Study. , 1991, Stroke.

[67]  Laurent D. Cohen,et al.  On active contour models and balloons , 1991, CVGIP Image Underst..

[68]  Berthold K. P. Horn,et al.  Closed-form solution of absolute orientation using orthonormal matrices , 1988 .

[69]  Ken Shoemake,et al.  Animating rotation with quaternion curves , 1985, SIGGRAPH.

[70]  Philippe C. Cattin,et al.  Automatic Ascending Aorta Detection in CTA Datasets , 2008, Bildverarbeitung für die Medizin.

[71]  Gustavo Carneiro,et al.  Detection of Fetal Anatomies from Ultrasound Images using a Constrained Probabilistic Boosting Tree , 2007 .

[72]  L. Breiman Random Forests , 2001, Machine Learning.

[73]  L. Rivest,et al.  Using orientation statistics to investigate variations in human kinematics , 2000 .

[74]  Dana H. Ballard,et al.  Generalizing the Hough transform to detect arbitrary shapes , 1981, Pattern Recognit..