XPS and STM study of the growth and structure of passive films in high temperature water on a nickel-base alloy

[1]  M. Lafont,et al.  Analysis and TEM examination of corrosion scales grown on Alloy 690 exposed to pressurized water at 325 °C , 2002 .

[2]  P. Marcus,et al.  In situ Scanning Tunneling Microscopy Study of the Structure of the Hydroxylated Anodic Oxide Film Formed on Cr(110) Single-Crystal Surfaces , 1999 .

[3]  P. Marcus,et al.  Surface hydroxylation and local structure of NiO thin films formed on Ni(111) , 1998 .

[4]  P. Marcus,et al.  X‐Ray Photoelectron Spectroscopy and Scanning Tunneling Microscopy Study of Passive Films Formed on (100) Fe‐18Cr‐13Ni Single‐Crystal Surfaces , 1998 .

[5]  B. Stellwag The mechanism of oxide film formation on austenitic stainless steels in high temperature water , 1998 .

[6]  R. Newman,et al.  Atomic images of 304SS surface after electrochemical treatments , 1997 .

[7]  B. Beverskog,et al.  Revised Pourbaix diagrams for nickel at 25-300°C , 1997 .

[8]  J. Congleton,et al.  Stress corrosion cracking of alloy 600 and alloy 690 in hydrogen/steam at 380 °C , 1997 .

[9]  A. Wiȩckowski,et al.  Solid-liquid electrochemical interfaces , 1997 .

[10]  P. Marcus,et al.  XPS and STM Study of Passive Films Formed on Fe‐22Cr(110) Single‐Crystal Surfaces , 1996 .

[11]  J. Castle,et al.  Peak fitting of the chromium 2p XPS spectrum , 1995 .

[12]  G. Thompson,et al.  Atomically Resolved STM of Oxide Film Structures on Fe‐Cr Alloys during Passivation in Sulfuric Acid Solution , 1994 .

[13]  P. Marcus,et al.  XPS and STM Investigation of the Passive Film Formed on Cr(110) Single‐Crystal Surfaces , 1994 .

[14]  G. E. Thompson,et al.  A scanning tunnelling microscopy study of structure and structural relaxation in passive oxide films on Fe-Cr alloys , 1994 .

[15]  G. Was,et al.  The Effect of Chromium, Carbon, and Yttrium on the Oxidation of Nickel-Base Alloys in High Temperature Water , 1993 .

[16]  P. Marcus,et al.  The anodic dissolution and passivation of NiCrFe alloys studied by ESCA , 1992 .

[17]  J. Robertson The mechanism of high temperature aqueous corrosion of stainless steels , 1991 .

[18]  Z. Szklarska‐Śmiałowska,et al.  Effect of Electrode Potential on the Hydrogen-Induced IGSCC of Alloy 600 in an Aqueous Solution at 350 C , 1987 .

[19]  P. Marcus,et al.  ESCA studies of Ni‐25 At% Fe alloy. 1—surface preparation treatments and oxidation , 1982 .

[20]  Digby D. Macdonald,et al.  A Point Defect Model for Anodic Passive Films I . Film Growth Kinetics , 1981 .

[21]  Digby D. Macdonald,et al.  A Point Defect Model for Anodic Passive Films II . Chemical Breakdown and Pit Initiation , 1981 .

[22]  N. McIntyre,et al.  X‐Ray Photoelectron Studies of the Aqueous Oxidation of Inconel‐600 Alloy , 1979 .

[23]  N. McIntyre,et al.  XPS study of the initial growth of oxide films on Inconel 600 alloy , 1978 .

[24]  I. Puigdomènech,et al.  Revised pourbaix diagrams for chromium at 25–300 °C , 1997 .

[25]  D. Landolt,et al.  An investigation of thin oxide films thermally grown in situ on Fe24Cr and Fe24Cr11Mo by auger electron spectroscopy and X-ray photoelectron spectroscopy , 1986 .

[26]  R. L. Tapping,et al.  The composition and morphology of oxide films formed on type 304 stainless steel in lithiated high temperature water , 1986 .

[27]  R. P. Frankenthal,et al.  Passivity of Metals , 1980 .