Thermodynamic Modeling of Imidazolium-Based Ionic Liquids with the [PF6]− Anion for Separation Purposes

There is an increased interest in developing accurate tools to relate the physicochemical properties of ionic liquids (ILs) to their microscopic structure as this information is needed to speed up the design of new ionic liquids for chemical and industrial processes. Molecular models can be used for this purpose. We explore here the extended capabilities of a model previously developed in the context of soft-SAFT, by Andreu and Vega in 2007 to reproduce the thermodynamic behavior of imidazolium hexafluorophosphate-based ([Cnmim][PF6]) ionic liquids. The molecular parameters optimized in the previous work have been used here in a transferable manner; some new members of the [Cnmim][PF6] family have also been added, as new recent experimental data has been published. The interfacial tensions have been calculated using a Density Gradient Approach and the results have been compared with available experimental data. The solubility of carbon monoxide and hydrogen in those ILs has been studied in the range of temperatures and pressures of application for separation processes. Binary mixtures with other imidazolium ionic liquids with different anions have been calculated, in a predictive manner. Finally, calculations of mixtures of ionic liquids with water also show very good agreement with experimental data. This work highlights the importance of using a simple but robust thermodynamic model, including the right level of interactions, to accurately describe the properties of these highly non-ideal systems.

[1]  K. R. Seddon,et al.  Deviations from ideality in mixtures of two ionic liquids containing a common ion. , 2005, The journal of physical chemistry. B.

[2]  Johan Jacquemin,et al.  Density and viscosity of several pure and water-saturated ionic liquids , 2006 .

[3]  F. Llovell,et al.  Modeling complex associating mixtures with [Cn-mim][Tf2N] ionic liquids: predictions from the soft-SAFT equation. , 2011, The journal of physical chemistry. B.

[4]  I. Marrucho,et al.  Surface tensions of imidazolium based ionic liquids: anion, cation, temperature and water effect. , 2007, Journal of colloid and interface science.

[5]  M. Wertheim,et al.  Fluids with highly directional attractive forces. IV. Equilibrium polymerization , 1986 .

[6]  U. Domańska,et al.  Solubility of 1-Alkyl-3-ethylimidazolium-Based Ionic Liquids in Water and 1-Octanol , 2008 .

[7]  Sheng Dai,et al.  Examination of the Potential of Ionic Liquids for Gas Separations , 2005 .

[8]  S. Enders,et al.  Interfacial properties of binary mixtures , 2002 .

[9]  H. Ted Davis,et al.  Modified Van der Waals theory of fluid interfaces , 1975 .

[10]  E. Maginn,et al.  Molecular simulation of ionic liquids: current status and future opportunities , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[11]  G. Maurer,et al.  Solubility of CO in the ionic liquid [bmim][PF 6] , 2005 .

[12]  Alain Graciaa,et al.  Modelling of the surface tension of pure components with the gradient theory of fluid interfaces: a simple and accurate expression for the influence parameters , 2003 .

[13]  A. Galindo,et al.  Application of the generalised SAFT-VR approach for long-ranged square-well potentials to model the phase behaviour of real fluids , 2009 .

[14]  F. Llovell,et al.  Capturing the solubility minima of n-alkanes in water by soft-SAFT. , 2009, The journal of physical chemistry. B.

[15]  Sangki Chun,et al.  Influence of structural variation in room-temperature ionic liquids on the selectivity and efficiency of competitive alkali metal salt extraction by a crown ether. , 2001, Analytical chemistry.

[16]  Josep C. Pàmies,et al.  Solubility of hydrogen in heavy n‐alkanes: Experiments and saft modeling , 2003 .

[17]  Sugata P. Tan,et al.  Recent Advances and Applications of Statistical Associating Fluid Theory , 2008 .

[18]  K. Gubbins,et al.  Equation of State for Lennard-Jones Chains , 1994 .

[19]  Lourdes F. Vega,et al.  THERMODYNAMIC BEHAVIOUR OF HOMONUCLEAR AND HETERONUCLEAR LENNARD-JONES CHAINS WITH ASSOCIATION SITES FROM SIMULATION AND THEORY , 1997 .

[20]  Luís M. N. B. F. Santos,et al.  Evaluation of COSMO-RS for the prediction of LLE and VLE of water and ionic liquids binary systems , 2008 .

[21]  Wolfgang Arlt,et al.  Separation of Azeotropic Mixtures Using Hyperbranched Polymers or Ionic Liquids , 2004 .

[22]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[23]  Y. Marcus,et al.  Ion pairing. , 2006, Chemical reviews.

[24]  M. Wertheim,et al.  Fluids with highly directional attractive forces. III. Multiple attraction sites , 1986 .

[25]  E. Voutsas,et al.  Prediction of phase equilibrium in mixtures containing ionic liquids using UNIFAC , 2009 .

[26]  L. Vega,et al.  Capturing the Solubility Behavior of CO2 in Ionic Liquids by a Simple Model , 2007 .

[27]  M. Shiflett,et al.  Thermal effect on C-H stretching vibrations of the imidazolium ring in ionic liquids. , 2007, Physical chemistry chemical physics : PCCP.

[28]  V. Gerbaud,et al.  Modeling the vapor–liquid equilibrium and association of nitrogen dioxide/dinitrogen tetroxide and its mixtures with carbon dioxide , 2008 .

[29]  Jeong Won Kang,et al.  Measurement and correlation of solubility of carbon dioxide in 1-alkyl-3-methylimidazolium hexafluorophosphate ionic liquids , 2011 .

[30]  R. Rogers,et al.  Liquid mixtures of ionic liquids and polymers as solvent systems , 2010 .

[31]  J. Andreu,et al.  Modeling the solubility behavior of CO(2), H(2), and Xe in [C(n)-mim][Tf(2)N] ionic liquids. , 2008, The journal of physical chemistry. B.

[32]  George Jackson,et al.  SAFT: Equation-of-state solution model for associating fluids , 1989 .

[33]  E. Voutsas,et al.  Corrigendum to “Prediction of phase equilibrium in mixtures containing ionic liquids using UNIFAC” [Fluid Phase Equilib. 284 (2009) 99–105] , 2010 .

[34]  Luís M. N. B. F. Santos,et al.  Thermophysical Properties and Water Saturation of [PF6]-Based Ionic Liquids , 2010 .

[35]  George Jackson,et al.  A group contribution method for associating chain molecules based on the statistical associating fluid theory (SAFT-gamma). , 2007, The Journal of chemical physics.

[36]  Seda Keskin,et al.  A review of ionic liquids towards supercritical fluid applications , 2007 .

[37]  Li-sheng Wang,et al.  Mutual Solubility of Alkyl Imidazolium Hexafluorophosphate Ionic Liquids and Water , 2010 .

[38]  J. Crespo,et al.  Highly selective transport of organic compounds by using supported liquid membranes based on ionic liquids. , 2002, Angewandte Chemie.

[39]  L. E. Scriven,et al.  Molecular theory of fluid interfaces , 1976 .

[40]  J. S. Rowlinson,et al.  Translation of J. D. van der Waals' “The thermodynamik theory of capillarity under the hypothesis of a continuous variation of density” , 1979 .

[41]  E. Maginn,et al.  Molecular Dynamics Study of the Ionic Liquid 1-n-Butyl-3-methylimidazolium Hexafluorophosphate , 2002 .

[42]  J. Andreu,et al.  Modeling ionic liquids and the solubility of gases in them: Recent advances and perspectives , 2010 .

[43]  George Jackson,et al.  New reference equation of state for associating liquids , 1990 .

[44]  Josep C. Pàmies,et al.  Phase equilibria of ethylene glycol oligomers and their mixtures , 2005 .

[45]  G. Maurer,et al.  Solubility of CO2 in the Ionic Liquid [bmim][PF6] , 2003 .

[46]  John A. Zollweg,et al.  The Lennard-Jones equation of state revisited , 1993 .

[47]  F. Müller-Plathe,et al.  Critical Parameters and Surface Tension of the Room Temperature Ionic Liquid [bmim][PF₆]: A Corresponding-States Analysis of Experimental and New Simulation Data , 2010 .

[48]  J. Brennecke,et al.  Anion effects on gas solubility in ionic liquids. , 2005, The journal of physical chemistry. B.

[49]  J. Coutinho,et al.  Extension of the Ye and Shreeve group contribution method for density estimation of ionic liquids in a wide range of temperatures and pressures , 2008 .

[50]  C. Drummond,et al.  Diversity observed in the nanostructure of protic ionic liquids. , 2010, The journal of physical chemistry. B.

[51]  J. D. van der Waals,et al.  Thermodynamische Theorie der Kapillarität unter Voraussetzung stetiger Dichteänderung , 1894 .

[52]  Josep Pàmies Corominas,et al.  Bulk and interfacial properties of chain fluids: a molecular modelling approach , 2003 .

[53]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy and Free Energy of a Nonuniform System. III. Nucleation in a Two‐Component Incompressible Fluid , 2013 .

[54]  G. Voth,et al.  On the Structure and Dynamics of Ionic Liquids , 2004 .

[55]  Luís M. N. B. F. Santos,et al.  Evaluation of cation-anion interaction strength in ionic liquids. , 2011, The journal of physical chemistry. B.

[56]  Stanley H. Huang,et al.  Equation of state for small, large, polydisperse, and associating molecules , 1990 .

[57]  H. Weingärtner,et al.  Understanding ionic liquids at the molecular level: facts, problems, and controversies. , 2008, Angewandte Chemie.

[58]  A. Harasima Molecular Theory of Surface Tension , 2007 .

[59]  Gabriele Sadowski,et al.  Perturbed-Chain SAFT: An Equation of State Based on a Perturbation Theory for Chain Molecules , 2001 .

[60]  A. Pádua,et al.  Nanostructural organization in ionic liquids. , 2006, The journal of physical chemistry. B.

[61]  M. Wertheim,et al.  Fluids with highly directional attractive forces. II. Thermodynamic perturbation theory and integral equations , 1984 .

[62]  Ioannis G. Economou,et al.  Statistical Associating Fluid Theory: A Successful Model for the Calculation of Thermodynamic and Phase Equilibrium Properties of Complex Fluid Mixtures , 2002 .

[63]  Luís M. N. B. F. Santos,et al.  Mutual solubilities of water and hydrophobic ionic liquids. , 2007, The journal of physical chemistry. B.

[64]  George Jackson,et al.  Statistical associating fluid theory for chain molecules with attractive potentials of variable range , 1997 .

[65]  Youdong Lin,et al.  Modeling Liquid−Liquid Equilibrium of Ionic Liquid Systems with NRTL, Electrolyte-NRTL, and UNIQUAC , 2008 .

[66]  M. Ribeiro,et al.  Single particle dynamics in ionic liquids of 1-alkyl-3-methylimidazolium cations. , 2005, The Journal of chemical physics.

[67]  F. Llovell,et al.  Phase equilibria, surface tensions and heat capacities of hydrofluorocarbons and their mixtures including the critical region , 2010 .

[68]  Lourdes F. Vega,et al.  Direct calculation of interfacial properties of fluids close to the critical region by a molecular-b , 2011 .

[69]  I. Marrucho,et al.  High-Pressure Densities and Derived Thermodynamic Properties of Imidazolium-Based Ionic Liquids , 2007 .

[70]  Sugata P. Tan,et al.  Generalized Procedure for Estimating the Fractions of Nonbonded Associating Molecules and Their Derivatives in Thermodynamic Perturbation Theory , 2004 .

[71]  M. Wertheim,et al.  Fluids with highly directional attractive forces. I. Statistical thermodynamics , 1984 .

[72]  Y. A. Beste,et al.  Extraktivdestillation mit ionischen Flüssigkeiten , 2005 .

[73]  R. Smith,et al.  High-Pressure Densities of 1-Alkyl-3-methylimidazolium Hexafluorophosphates and 1-Alkyl-3-methylimidazolium Tetrafluoroborates at Temperatures from (313 to 473) K and at Pressures up to 200 MPa , 2009 .

[74]  Erich A. Müller,et al.  Molecular-Based Equations of State for Associating Fluids: A Review of SAFT and Related Approaches , 2001 .

[75]  Wolfgang Arlt,et al.  Influence of Ionic Liquids on the Phase Behavior of Aqueous Azeotropic Systems , 2004 .

[76]  J. Prausnitz,et al.  Solubilities in Ionic Liquids and Molten Salts from a Simple Perturbed-Hard-Sphere Theory , 2006 .