Time-Optimal Self-Stabilizing Leader Election on Rings in Population Protocols

We propose a self-stabilizing leader election protocol on directed rings in the model of population protocols. Given an upper bound $N$ on the population size $n$, the proposed protocol elects a unique leader within $O(nN)$ expected steps starting from any configuration and uses $O(N)$ states. This convergence time is optimal if a given upper bound $N$ is asymptotically tight, i.e., $N=O(n)$.

[1]  Chuan Xu,et al.  Time-Optimal Self-Stabilizing Leader Election in Population Protocols , 2019, PODC.

[2]  Ajoy Kumar Datta,et al.  The Same Speed Timer in Population Protocols , 2016, 2016 IEEE 36th International Conference on Distributed Computing Systems (ICDCS).

[3]  Fukuhito Ooshita,et al.  Loosely-Stabilizing Leader Election on Arbitrary Graphs in Population Protocols , 2014, OPODIS.

[4]  Ho-Lin Chen,et al.  Self-Stabilizing Leader Election , 2019, PODC.

[5]  Maria Gradinariu Potop-Butucaru,et al.  Stabilizing leader election in population protocols , 2007 .

[6]  Edsger W. Dijkstra,et al.  Self-stabilizing systems in spite of distributed control , 1974, CACM.

[7]  Fukuhito Ooshita,et al.  Loosely-Stabilizing Leader Election with Polylogarithmic Convergence Time , 2018, OPODIS.

[8]  Fukuhito Ooshita,et al.  Loosely-Stabilizing Leader Election for Arbitrary Graphs in Population Protocol Model , 2019, IEEE Transactions on Parallel and Distributed Systems.

[9]  Yukiko Yamauchi,et al.  Loosely-stabilizing leader election in a population protocol model , 2012, Theor. Comput. Sci..

[10]  Joffroy Beauquier,et al.  Self-stabilizing Leader Election in Population Protocols over Arbitrary Communication Graphs , 2013, OPODIS.

[11]  Michael J. Fischer,et al.  Self-stabilizing population protocols , 2005, TAAS.

[12]  Ho-Lin Chen,et al.  Self-Stabilizing Leader Election in Regular Graphs , 2020, PODC.

[13]  Prashant J. Shenoy,et al.  Agile dynamic provisioning of multi-tier Internet applications , 2008, TAAS.

[14]  Toshimitsu Masuzawa,et al.  Time-optimal Loosely-stabilizing Leader Election in Population Protocols , 2020, ArXiv.

[15]  Toshimitsu Masuzawa,et al.  The Power of Global Knowledge on Self-stabilizing Population Protocols , 2020, SIROCCO.

[16]  Koichi Wada,et al.  How to Prove Impossibility Under Global Fairness: On Space Complexity of Self-Stabilizing Leader Election on a Population Protocol Model , 2012, Theory of Computing Systems.

[17]  Paul G. Spirakis,et al.  Determining majority in networks with local interactions and very small local memory , 2014, Distributed Computing.

[18]  Taisuke Izumi On Space and Time Complexity of Loosely-Stabilizing Leader Election , 2015, SIROCCO.

[19]  David Eisenstat,et al.  Fast computation by population protocols with a leader , 2006, Distributed Computing.

[20]  Fukuhito Ooshita,et al.  Loosely Stabilizing Leader Election on Arbitrary Graphs in Population Protocols without Identifiers or Random Numbers , 2020, IEICE Trans. Inf. Syst..

[21]  Michael J. Fischer,et al.  Computation in networks of passively mobile finite-state sensors , 2004, PODC '04.

[22]  Fukuhito Ooshita,et al.  Time-Optimal Leader Election in Population Protocols , 2020, IEEE Transactions on Parallel and Distributed Systems.

[23]  Gennaro Cordasco,et al.  Space-Optimal Proportion Consensus with Population Protocols , 2017, SSS.

[24]  Michael J. Fischer,et al.  Self-stabilizing Leader Election in Networks of Finite-State Anonymous Agents , 2006, OPODIS.