Quasi-periodicities of BL Lacertae objects

We review the reports of possible year-long quasi-periodicities of BL Lac objects in the γ-ray and optical bands, and present a homogeneous time analysis of the light curves of PKS2155−304, PG1553+113, and BL Lac. Based on results from a survey covering the entire Fermi γ-ray sky we have estimated the fraction of possible quasi-periodic BL Lac objects. We compared the cyclical behaviour in BL Lac objects with that derived from the search of possible optical periodicities in quasars, and find that at z ≲ 1 the cosmic density of quasi-periodic BL Lac objects is larger than that of quasi-periodic quasars. If the BL Lac quasi-periodicities were due to a supermassive binary black hole (SBBH) scenario, there could be a tension with the upper limits on the gravitational wave background measured by the pulsar timing array. The argument clearly indicates the difficulties of generally associating quasi-periodicities of BL Lac objects with SBBHs.

[1]  P. Ricker,et al.  Pulsar timing constraints on the Fermi massive black hole binary blazar population , 2018, Monthly Notices of the Royal Astronomical Society: Letters.

[2]  J. Vanderplas Understanding the Lomb–Scargle Periodogram , 2017, 1703.09824.

[3]  H. Monteiro,et al.  Jet Precession Driven by a Supermassive Black Hole Binary System in the BL Lac Object PG 1553+113 , 2017, 1712.06881.

[4]  D. N. Okhmat,et al.  Blazar spectral variability as explained by a twisted inhomogeneous jet , 2017, Nature.

[5]  D. Prokhorov,et al.  A search for cyclical sources of γ-ray emission on the period range from days to years in the Fermi-LAT sky , 2017, 1707.05829.

[6]  D. Yan,et al.  A γ-ray Quasi-periodic Modulation in the Blazar PKS 0301–243? , 2017, 1706.02049.

[7]  Z. Haiman,et al.  Testing the Binary Hypothesis: Pulsar Timing Constraints on Supermassive Black Hole Binary Candidates , 2017, 1703.10611.

[8]  A. Cavaliere,et al.  Blazar Jets Perturbed by Magneto-gravitational Stresses in Supermassive Binaries , 2017, 1701.05350.

[9]  A. Treves,et al.  Gamma-ray and optical oscillations of 0716+714, MRK 421, and BL Lacertae , 2017, 1701.04454.

[10]  N. Liao,et al.  Revisiting Quasi-periodic Modulation in γ-Ray Blazar PKS 2155-304 with Fermi Pass 8 Data , 2016, 1611.04354.

[11]  A. Stamerra,et al.  A model for periodic blazars , 2016, 1610.04709.

[12]  M. Sikora,et al.  Gamma-Ray Observations of Active Galactic Nuclei , 2016 .

[13]  P. Giommi,et al.  Active galactic nuclei: what’s in a name? , 2017, The Astronomy and Astrophysics Review.

[14]  M. Graham,et al.  A Population of Short-Period Variable Quasars from PTF as Supermassive Black Hole Binary Candidates , 2016, 1604.01020.

[15]  C. Guidorzi,et al.  Individual power density spectra of Swift gamma-ray bursts , 2016, 1603.06890.

[16]  A. Treves,et al.  GAMMA-RAY AND OPTICAL OSCILLATIONS IN PKS 0537–441 , 2015, 1512.08801.

[17]  A. Treves,et al.  QUASI-PERIODICITIES AT YEAR-LIKE TIMESCALES IN BLAZARS , 2015, 1512.04561.

[18]  D. Thompson,et al.  MULTIWAVELENGTH EVIDENCE FOR QUASI-PERIODIC MODULATION IN THE GAMMA-RAY BLAZAR PG 1553+113 , 2015, 1509.02063.

[19]  Ciro Donalek,et al.  A systematic search for close supermassive black hole binaries in the Catalina Real-time Transient Survey , 2015, 1507.07603.

[20]  The Fermi-LAT Collaboration Fermi Large Area Telescope Third Source Catalog , 2015, 1501.02003.

[21]  A. Treves,et al.  QUASI-PERIODICITIES OF THE BL LACERTAE OBJECT PKS 2155−304 , 2014 .

[22]  E. Pian,et al.  An optical view of BL Lacertae objects , 2014, 1407.7615.

[23]  B. Dai,et al.  Optical quasi-periodic oscillation and color behavior of blazar PKS 2155–304 , 2014, 1405.6858.

[24]  Brandon C. Kelly,et al.  FLEXIBLE AND SCALABLE METHODS FOR QUANTIFYING STOCHASTIC VARIABILITY IN THE ERA OF MASSIVE TIME-DOMAIN ASTRONOMICAL DATA SETS , 2014, 1402.5978.

[25]  A. Marscher TURBULENT, EXTREME MULTI-ZONE MODEL FOR SIMULATING FLUX AND POLARIZATION VARIABILITY IN BLAZARS , 2013, 1311.7665.

[26]  P. Schady,et al.  THE COSMIC EVOLUTION OF FERMI BL LACERTAE OBJECTS , 2013, 1310.0006.

[27]  A. Treves,et al.  Long and short term variability of seven blazars in six near-infrared/optical bands , 2013, 1308.0609.

[28]  J. Isler,et al.  SMARTS OPTICAL AND INFRARED MONITORING OF 12 GAMMA-RAY BRIGHT BLAZARS , 2012, 1201.4380.

[29]  Didier Barret,et al.  MAXIMUM LIKELIHOOD FITTING OF X-RAY POWER DENSITY SPECTRA: APPLICATION TO HIGH-FREQUENCY QUASI-PERIODIC OSCILLATIONS FROM THE NEUTRON STAR X-RAY BINARY 4U1608-522 , 2011, 1112.0535.

[30]  M. Ashley,et al.  Long-term optical variability of PKS 2155-304 , 2011, 1108.1346.

[31]  P. S. Smith,et al.  Coordinated Fermi/Optical Monitoring of Blazars and the Great 2009 September Gamma-ray Flare of 3C 454.3 , 2009, 0912.3621.

[32]  S. Vaughan,et al.  A Bayesian test for periodic signals in red noise , 2009, 0910.2706.

[33]  M. Pasanen,et al.  Tuorla Blazar Monitoring Program , 2009 .

[34]  S. Vaughan,et al.  A simple test for periodic signals in red noise , 2004, astro-ph/0412697.

[35]  Paolo Conconi,et al.  REM: a fully robotic telescope for GRB observations , 2004, SPIE Astronomical Telescopes + Instrumentation.

[36]  Paolo Conconi,et al.  The REM telescope: a robotic multiwavelength facility , 2004, SPIE Astronomical Telescopes + Instrumentation.

[37]  Oxford,et al.  The 2dF QSO Redshift Survey – XII. The spectroscopic catalogue and luminosity function , 2004, astro-ph/0403040.

[38]  Michael Schulz,et al.  REDFIT: estimating red-noise spectra directly from unevenly spaced paleoclimatic time series , 2002 .

[39]  H. Lehto,et al.  OJ 287 Outburst Structure and a Binary Black Hole Model , 1996 .

[40]  A. Schwarzenberg-Czerny,et al.  Accuracy of period determination , 1991 .

[41]  A. Sillanpää,et al.  OJ 287 - Binary pair of supermassive black holes , 1988 .

[42]  J. Scargle Studies in astronomical time series analysis. II - Statistical aspects of spectral analysis of unevenly spaced data , 1982 .