Numerical simulations of 2D fractional subdiffusion problems

The growing number of applications of fractional derivatives in various fields of science and engineering indicates that there is a significant demand for better mathematical algorithms for models with real objects and processes. Currently, most algorithms are designed for 1D problems due to the memory effect in fractional derivatives. In this work, the 2D fractional subdiffusion problems are solved by an algorithm that couples an adaptive time stepping and adaptive spatial basis selection approach. The proposed algorithm is also used to simulate a subdiffusion-convection equation.

[1]  Tao Tang,et al.  Boundary Layer Resolving Pseudospectral Methods for Singular Perturbation Problems , 1996, SIAM J. Sci. Comput..

[2]  Kamel Al-khaled,et al.  An approximate solution for a fractional diffusion-wave equation using the decomposition method , 2005, Appl. Math. Comput..

[3]  L. Ling,et al.  Multiquadric collocation method with integralformulation for boundary layer problems , 2004 .

[4]  Neville J. Ford,et al.  The numerical solution of fractional differential equations: Speed versus accuracy , 2001, Numerical Algorithms.

[5]  Robert Schaback,et al.  An improved subspace selection algorithm for meshless collocation methods , 2009 .

[6]  Weihua Deng,et al.  Numerical algorithm for the time fractional Fokker-Planck equation , 2007, J. Comput. Phys..

[7]  Shaher Momani,et al.  Approximate solutions for boundary value problems of time-fractional wave equation , 2006, Appl. Math. Comput..

[8]  Santos B. Yuste,et al.  Weighted average finite difference methods for fractional diffusion equations , 2004, J. Comput. Phys..

[9]  R. Gorenflo,et al.  Time Fractional Diffusion: A Discrete Random Walk Approach , 2002 .

[10]  R. Hilfer,et al.  NUMERICAL RESULTS FOR THE GENERALIZED MITTAG-LEER FUNCTION , 2005 .

[11]  Peter P. Valko,et al.  Numerical inversion of 2-D Laplace transforms applied to fractional diffusion equations , 2005 .

[12]  Eduardo Cuesta,et al.  Convolution quadrature time discretization of fractional diffusion-wave equations , 2006, Math. Comput..

[13]  Ralf Metzler,et al.  Boundary value problems for fractional diffusion equations , 2000 .

[14]  Eduardo Cuesta,et al.  A Numerical Method for an Integro-Differential Equation with Memory in Banach Spaces: Qualitative Properties , 2003, SIAM J. Numer. Anal..

[15]  W. Ames Mathematics in Science and Engineering , 1999 .

[16]  I. Podlubny Fractional differential equations , 1998 .

[17]  Fawang Liu,et al.  Implicit difference approximation for the two-dimensional space-time fractional diffusion equation , 2007 .

[18]  K. Diethelm AN ALGORITHM FOR THE NUMERICAL SOLUTION OF DIFFERENTIAL EQUATIONS OF FRACTIONAL ORDER , 1997 .

[19]  Yongli Song,et al.  Periodic solutions of a nonautonomous periodic model of population with continuous and discrete time , 2006 .

[20]  Fawang Liu,et al.  Detailed analysis of a conservative difference approximation for the time fractional diffusion equation , 2006 .

[21]  Robert Schaback,et al.  Stable and Convergent Unsymmetric Meshless Collocation Methods , 2008, SIAM J. Numer. Anal..

[22]  Francesco Mainardi,et al.  Continuous-time random walk and parametric subordination in fractional diffusion , 2007 .

[23]  R. Schaback,et al.  Results on meshless collocation techniques , 2006 .

[24]  Yury F. Luchko Some uniqueness and existence results for the initial-boundary-value problems for the generalized time-fractional diffusion equation , 2010, Comput. Math. Appl..

[25]  Masahiro Yamamoto,et al.  Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems , 2011 .

[26]  Robert Schaback,et al.  On convergent numerical algorithms for unsymmetric collocation , 2009, Adv. Comput. Math..

[27]  Hermann Brunner,et al.  Piecewise Polynomial Collocation Methods for Linear Volterra Integro-Differential Equations with Weakly Singular Kernels , 2001, SIAM J. Numer. Anal..

[28]  Leevan Ling,et al.  Adaptive multiquadric collocation for boundary layer problems , 2006 .

[29]  Shaher Momani,et al.  Numerical solution of Fokker–Planck equation with space- and time-fractional derivatives , 2007 .

[30]  Alan D. Freed,et al.  An efficient algorithm for the evaluation of convolution integrals , 2006, Comput. Math. Appl..

[31]  I. Turner,et al.  A fractional-order implicit difference approximation for the space-time fractional diffusion equation , 2006 .

[32]  Zhi‐zhong Sun,et al.  A fully discrete difference scheme for a diffusion-wave system , 2006 .

[33]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[34]  Yury F. Luchko,et al.  Algorithms for the fractional calculus: A selection of numerical methods , 2005 .

[35]  B. Henry,et al.  The accuracy and stability of an implicit solution method for the fractional diffusion equation , 2005 .

[36]  S. Momani,et al.  Numerical methods for nonlinear partial differential equations of fractional order , 2008 .