An upper estimate of integral points in real simplices with an application to singularity theory
暂无分享,去创建一个
[1] Alan Durfee. The signature of smoothings of complex surface singularities , 1978 .
[2] S. Yau,et al. Counting the Number of Integral Points in General $n$ -Dimensional Tetrahedra and Bernoulli Polynomials , 2003, Canadian Mathematical Bulletin.
[3] Sinai Robins,et al. The Ehrhart polynomial of a lattice polytope , 1997 .
[4] A. Barvinok,et al. An Algorithmic Theory of Lattice Points in Polyhedra , 1999 .
[5] D. Spencer. The Lattice Points of Tetrahedra , 1942 .
[6] Shaofang Hong,et al. Analysis of sharp polynomial upper estimate of number of positive integral points in a five-dimensional tetrahedra , 2008, Discret. Math..
[7] L. J. Mordell,et al. Lattice Points in a Tetrahedron and Generalized Dedekind Sums , 1951 .
[8] J. E. Littlewood,et al. Some problems of diophantine approximation , 1914 .
[9] Michèle Vergne,et al. Lattice points in simple polytopes , 1997 .
[10] A. I. Barvinok,et al. Computing the Ehrhart polynomial of a convex lattice polytope , 1994, Discret. Comput. Geom..
[11] J. Littlewood,et al. On a Hardy-Littlewood problem of diophantine approximation , 1939, Mathematical Proceedings of the Cambridge Philosophical Society.
[12] Carl Pomerance,et al. The Role of Smooth Numbers in Number Theoretic Algorithms , 1995 .
[13] 吉永 悦男. Isolated singularities defined by weighted homogeneous polynomials , 1984 .
[14] Kyoji Saito,et al. Quasihomogene isolierte Singularitäten von Hyperflächen , 1971 .
[15] B. Teissier,et al. Conditions d'adjonction, d'après du val , 1980 .
[16] G. H. Hardy,et al. Some problems of Diophantine approximation: The lattice-points of a right-angled triangle. (Second memoir.) , 1922 .
[17] Sylvain E. Cappell,et al. Genera of algebraic varieties and counting of lattice points , 1994, math/9401219.
[18] S. Yau,et al. A sharp estimate of the number of integral points in a tetrahedron. , 1992 .
[19] James Pommersheim,et al. Toric varieties, lattice points and Dedekind sums , 1993 .