Multi-Modal Technology for User Interface Analysis including Mental State Detection and Eye Tracking Analysis

[1]  Max Welling,et al.  Auto-Encoding Variational Bayes , 2013, ICLR.

[2]  Tapani Raiko,et al.  Semi-supervised Learning with Ladder Networks , 2015, NIPS.

[3]  Antonio Torralba,et al.  SIFT Flow: Dense Correspondence across Scenes and Its Applications , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  Tsu-Tian Lee,et al.  Support vector regression performance analysis and systematic parameter selection , 2005, Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005..

[5]  Ming Yang,et al.  DeepFace: Closing the Gap to Human-Level Performance in Face Verification , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[6]  Steven K. Feiner,et al.  Gaze locking: passive eye contact detection for human-object interaction , 2013, UIST.

[7]  P Omvik,et al.  How smoking affects blood pressure. , 1996, Blood pressure.

[8]  Mohammad Norouzi,et al.  Stacks of convolutional Restricted Boltzmann Machines for shift-invariant feature learning , 2009, CVPR.

[9]  David J. Kriegman,et al.  Localizing parts of faces using a consensus of exemplars , 2011, CVPR.

[10]  Mark W Scerbo,et al.  An evaluation of an adaptive automation system using a cognitive vigilance task , 2004, Biological Psychology.

[11]  Shaogang Gong,et al.  Composite support vector machines for detection of faces across views and pose estimation , 2002, Image Vis. Comput..

[12]  David A. McAllester,et al.  Object Detection with Discriminatively Trained Part Based Models , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  Petros Maragos,et al.  Estimation of eye gaze direction angles based on active appearance models , 2015, 2015 IEEE International Conference on Image Processing (ICIP).

[14]  Yoshua Bengio,et al.  Equilibrated adaptive learning rates for non-convex optimization , 2015, NIPS.

[15]  Lijun Yin,et al.  FERA 2015 - second Facial Expression Recognition and Analysis challenge , 2015, 2015 11th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG).

[16]  P. Lang International affective picture system (IAPS) : affective ratings of pictures and instruction manual , 2005 .

[17]  Li Shigang,et al.  Eye-Model-Based Gaze Estimation by RGB-D Camera , 2014, CVPR 2014.

[18]  Ian H. Witten,et al.  The WEKA data mining software: an update , 2009, SKDD.

[19]  T. Scherer,et al.  Constraints for emotion specificity in fear and anger: the context counts. , 2001, Psychophysiology.

[20]  Andrew McCallum,et al.  An Introduction to Conditional Random Fields , 2010, Found. Trends Mach. Learn..

[21]  Björn W. Schuller,et al.  Efficient Recognition of Authentic Dynamic Facial Expressions on the Feedtum Database , 2006, 2006 IEEE International Conference on Multimedia and Expo.

[22]  Carlo Gatta,et al.  Unsupervised Deep Feature Extraction for Remote Sensing Image Classification , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[23]  Thomas S. Huang,et al.  Interactive Facial Feature Localization , 2012, ECCV.

[24]  V. Lepetit,et al.  EPnP: An Accurate O(n) Solution to the PnP Problem , 2009, International Journal of Computer Vision.

[25]  Hans-Peter Seidel,et al.  3D scattered data approximation with adaptive compactly supported radial basis functions , 2004, Proceedings Shape Modeling Applications, 2004..

[26]  Mario Cannataro,et al.  K-Surfer: A KNIME Extension for the Management and Analysis of Human Brain MRI FreeSurfer/FSL Data , 2014, Brain Informatics and Health.

[27]  Eugénio C. Oliveira,et al.  Real-Time Psychophysiological Emotional State Estimation in Digital Gameplay Scenarios , 2013, EANN.

[28]  Wiesław Tłaczała Modeling with LabVIEW , 2005 .

[29]  Alexander Zelinsky,et al.  An algorithm for real-time stereo vision implementation of head pose and gaze direction measurement , 2000, Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580).

[30]  Simon Baker,et al.  Active Appearance Models Revisited , 2004, International Journal of Computer Vision.

[31]  Joseph H. Goldberg,et al.  Identifying fixations and saccades in eye-tracking protocols , 2000, ETRA.

[32]  Jakob Nielsen,et al.  Ten Usability Heuristics , 2006 .

[33]  J. Russell A circumplex model of affect. , 1980 .

[34]  P. Ekman Facial expression and emotion. , 1993, The American psychologist.

[35]  Yves Bertot,et al.  Formal Study of Plane Delaunay Triangulation , 2010, ITP.

[36]  Yoshua. Bengio,et al.  Learning Deep Architectures for AI , 2007, Found. Trends Mach. Learn..

[37]  Maja Pantic,et al.  Gauss-Newton Deformable Part Models for Face Alignment In-the-Wild , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[38]  Quoc V. Le,et al.  Sequence to Sequence Learning with Neural Networks , 2014, NIPS.

[39]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[40]  Brendan J. Frey,et al.  k-Sparse Autoencoders , 2013, ICLR.

[41]  Bao-Liang Lu,et al.  Emotion classification based on gamma-band EEG , 2009, 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[42]  Yoon Kim,et al.  Convolutional Neural Networks for Sentence Classification , 2014, EMNLP.

[43]  Lijun Yin,et al.  Static and dynamic 3D facial expression recognition: A comprehensive survey , 2012, Image Vis. Comput..

[44]  Linden J. Ball,et al.  Eye Tracking in Human-Computer Interaction and Usability Research : Current Status and Future Prospects , 2004 .

[45]  Yoshua Bengio,et al.  Understanding the difficulty of training deep feedforward neural networks , 2010, AISTATS.

[46]  Kunihiko Fukushima,et al.  Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position , 1980, Biological Cybernetics.

[47]  Christopher Boehnen,et al.  Gaze estimation for off-angle iris recognition based on the biometric eye model , 2013, Defense, Security, and Sensing.

[48]  Hao Wu,et al.  Face alignment via boosted ranking model , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[49]  Surendra Ranganath,et al.  One-time calibration eye gaze detection system , 2004, 2004 International Conference on Image Processing, 2004. ICIP '04..

[50]  Pascal Vincent,et al.  Representation Learning: A Review and New Perspectives , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[51]  Ben Shneiderman,et al.  Workplace user frustration with computers: an exploratory investigation of the causes and severity , 2006, Behav. Inf. Technol..

[52]  Jakob Nielsen,et al.  Heuristic evaluation of user interfaces , 1990, CHI '90.

[53]  Timo Schneider,et al.  Manifold Alignment for Person Independent Appearance-Based Gaze Estimation , 2014, 2014 22nd International Conference on Pattern Recognition.

[54]  Hongbin Zha,et al.  Optimizing kd-trees for scalable visual descriptor indexing , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[55]  R. Baillargeon Infants' reasoning about hidden objects: evidence for event-general and event-specific expectations. , 2004, Developmental science.

[56]  Timothy F. Cootes,et al.  Active Shape Models-Their Training and Application , 1995, Comput. Vis. Image Underst..

[57]  Concha Bielza,et al.  A survey on multi‐output regression , 2015, WIREs Data Mining Knowl. Discov..

[58]  Veikko Surakka,et al.  Emotions and heart rate while sitting on a chair , 2005, CHI.

[59]  Abdul Wahab,et al.  Analyzing Brain Activity in Understanding Cultural and Language Interaction for Depression and Anxiety , 2011 .

[60]  Theo Gevers,et al.  Calibration-Free Gaze Estimation Using Human Gaze Patterns , 2013, 2013 IEEE International Conference on Computer Vision.

[61]  Takahiro Okabe,et al.  Head pose-free appearance-based gaze sensing via eye image synthesis , 2012, Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012).

[62]  Luc Van Gool,et al.  Speeded-Up Robust Features (SURF) , 2008, Comput. Vis. Image Underst..

[63]  Jeff T. Larsen,et al.  Effects of positive and negative affect on electromyographic activity over zygomaticus major and corrugator supercilii. , 2003, Psychophysiology.

[64]  Honglak Lee,et al.  Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations , 2009, ICML '09.

[65]  Yoshio Iwai,et al.  Appearance-Based Gaze Estimation for Digital Signage Considering Head Pose , 2015 .

[66]  Tom F. Price,et al.  Does Negative Affect Always Narrow and Positive Affect Always Broaden the Mind? Considering the Influence of Motivational Intensity on Cognitive Scope , 2013 .

[67]  R. Davidson Affective neuroscience and psychophysiology: toward a synthesis. , 2003, Psychophysiology.

[68]  Jing Huang,et al.  Audio-visual deep learning for noise robust speech recognition , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[69]  Pietro Perona,et al.  Fast Feature Pyramids for Object Detection , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[70]  C. Nass,et al.  Emotion in human-computer interaction , 2002 .

[71]  Davis E. King Max-Margin Object Detection , 2015, ArXiv.

[72]  Nitish Srivastava,et al.  Improving neural networks by preventing co-adaptation of feature detectors , 2012, ArXiv.

[73]  Andreas Holzinger,et al.  Usability engineering methods for software developers , 2005, CACM.

[74]  P. Ekman,et al.  The Duchenne smile: emotional expression and brain physiology. II. , 1990, Journal of personality and social psychology.

[75]  Jian-Gang Wang,et al.  EM enhancement of 3D head pose estimated by point at infinity , 2007, Image Vis. Comput..

[76]  Robert Oostenveld,et al.  The five percent electrode system for high-resolution EEG and ERP measurements , 2001, Clinical Neurophysiology.

[77]  A. Damasio,et al.  Basic emotions are associated with distinct patterns of cardiorespiratory activity. , 2006, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[78]  J. E. Rose,et al.  Autonomic Nervous System Activity Distinguishes Among Emotions , 2009 .

[79]  Raimund Dachselt,et al.  3D attentional maps: aggregated gaze visualizations in three-dimensional virtual environments , 2010, AVI.

[80]  Demetri Terzopoulos,et al.  Deformable models in medical image analysis: a survey , 1996, Medical Image Anal..

[81]  Petros Maragos,et al.  Adaptive and constrained algorithms for inverse compositional Active Appearance Model fitting , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[82]  Daniel McDuff,et al.  Affectiva-MIT Facial Expression Dataset (AM-FED): Naturalistic and Spontaneous Facial Expressions Collected "In-the-Wild" , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops.

[83]  Lucas P J J Noldus,et al.  The Observer XT: A tool for the integration and synchronization of multimodal signals , 2009, Behavior research methods.

[84]  Philip A. Gable,et al.  Attitudes toward emotions. , 2011, Journal of personality and social psychology.

[85]  Graham Clarke,et al.  A user-independent real-time emotion recognition system for software agents in domestic environments , 2007, Eng. Appl. Artif. Intell..

[86]  P. Ekman,et al.  Facial action coding system , 2019 .

[87]  Carlos Hitoshi Morimoto,et al.  Eye gaze tracking techniques for interactive applications , 2005, Comput. Vis. Image Underst..

[88]  Sazali Yaacob,et al.  Emotion recognition from facial EMG signals using higher order statistics and principal component analysis , 2014 .

[89]  H. Conte,et al.  Circumplex models of personality and emotions , 1997 .

[90]  Rob Fergus,et al.  Stochastic Pooling for Regularization of Deep Convolutional Neural Networks , 2013, ICLR.

[91]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[92]  Jakob Nielsen,et al.  The usability engineering life cycle , 1992, Computer.

[93]  Nitish Srivastava,et al.  Dropout: a simple way to prevent neural networks from overfitting , 2014, J. Mach. Learn. Res..

[94]  Xiantong Zhen,et al.  Supervised descriptor learning for multi-output regression , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[95]  Onder Aydemir,et al.  Classification of various facial movement artifacts in EEG signals , 2012, 2012 35th International Conference on Telecommunications and Signal Processing (TSP).

[96]  Mohammad H. Mahoor,et al.  Automatic detection of non-posed facial action units , 2012, 2012 19th IEEE International Conference on Image Processing.

[97]  Mann Oo. Hay Emotion recognition in human-computer interaction , 2012 .

[98]  Qi Tian,et al.  Image Search Reranking With Hierarchical Topic Awareness , 2015, IEEE Transactions on Cybernetics.

[99]  Vangelis Metsis,et al.  An eye tracking dataset for point of gaze detection , 2012, ETRA '12.

[100]  Pascal Vincent,et al.  A Connection Between Score Matching and Denoising Autoencoders , 2011, Neural Computation.

[101]  Rajita Sinha,et al.  Multivariate Response Patterning of Fear and Anger , 1996 .

[102]  E. Vesterinen,et al.  Affective Computing , 2009, Encyclopedia of Biometrics.

[103]  Changchun Liu,et al.  An empirical study of machine learning techniques for affect recognition in human–robot interaction , 2006, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[104]  Fuqiang Chen,et al.  Contractive De-noising Auto-Encoder , 2014, ICIC.

[105]  Alexander C. Berg,et al.  Combining multiple sources of knowledge in deep CNNs for action recognition , 2016, 2016 IEEE Winter Conference on Applications of Computer Vision (WACV).

[106]  Chung-Shing Wang,et al.  Reconstruction and Representation for 3D Implicit Surfaces , 2011 .

[107]  Barry J Maron,et al.  The heart of trained athletes: cardiac remodeling and the risks of sports, including sudden death. , 2006, Circulation.

[108]  Nitish Srivastava,et al.  Multimodal learning with deep Boltzmann machines , 2012, J. Mach. Learn. Res..

[109]  Timothy F. Cootes,et al.  Active Appearance Models , 1998, ECCV.

[110]  Fernando De la Torre,et al.  Facing Imbalanced Data--Recommendations for the Use of Performance Metrics , 2013, 2013 Humaine Association Conference on Affective Computing and Intelligent Interaction.

[111]  P. Ekman,et al.  Facial Expressions of Emotion , 1979 .

[112]  C. L. Philip Chen,et al.  Hierarchical Feature Extraction With Local Neural Response for Image Recognition , 2013, IEEE Transactions on Cybernetics.

[113]  Fernando Vilariño,et al.  A Feature-Based Gaze Estimation Algorithm for Natural Light Scenarios , 2015, IbPRIA.

[114]  Wade Junek,et al.  Mind Reading: The Interactive Guide to Emotions , 2007 .

[115]  Alain Abran,et al.  Usability Meanings and Interpretations in ISO Standards , 2003, Software Quality Journal.

[116]  Jason Weston,et al.  Curriculum learning , 2009, ICML '09.

[117]  Tamás D. Gedeon,et al.  Video and Image based Emotion Recognition Challenges in the Wild: EmotiW 2015 , 2015, ICMI.

[118]  el Kaliouby,et al.  Mind-reading machines: automated inference of complex mental states , 2005 .

[119]  S. A. Hosseini,et al.  Classification of Brain Activity in Emotional States Using HOS Analysis , 2012 .

[120]  Xin Geng,et al.  Head Pose Estimation Based on Multivariate Label Distribution , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[121]  Peter D. Lawrence,et al.  A single camera eye-gaze tracking system with free head motion , 2006, ETRA.

[122]  Jian-Gang Wang,et al.  Gaze determination via images of irises , 2001, Image Vis. Comput..

[123]  Juhan Nam,et al.  Multimodal Deep Learning , 2011, ICML.

[124]  Jitendra Malik,et al.  Shape matching and object recognition using shape contexts , 2010, 2010 3rd International Conference on Computer Science and Information Technology.

[125]  Elisabeth André,et al.  Emotion recognition based on physiological changes in music listening , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[126]  Geoffrey E. Hinton,et al.  Speech recognition with deep recurrent neural networks , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[127]  Stefanos Zafeiriou,et al.  Feature-Based Lucas–Kanade and Active Appearance Models , 2015, IEEE Transactions on Image Processing.

[128]  Bodo Rosenhahn,et al.  Class Generative Models Based on Feature Regression for Pose Estimation of Object Categories , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[129]  Carlos Hitoshi Morimoto,et al.  Detecting eye position and gaze from a single camera and 2 light sources , 2002, Object recognition supported by user interaction for service robots.

[130]  Randolph R. Cornelius THEORETICAL APPROACHES TO EMOTION , 2000 .

[131]  Thomas Brox,et al.  Learning to Generate Chairs, Tables and Cars with Convolutional Networks , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[132]  Simon Baker,et al.  Lucas-Kanade 20 Years On: A Unifying Framework , 2004, International Journal of Computer Vision.

[133]  A. Ng Feature selection, L1 vs. L2 regularization, and rotational invariance , 2004, Twenty-first international conference on Machine learning - ICML '04.

[134]  Pascal Vincent,et al.  Contractive Auto-Encoders: Explicit Invariance During Feature Extraction , 2011, ICML.

[135]  Max Welling,et al.  Semi-supervised Learning with Deep Generative Models , 2014, NIPS.

[136]  Alexei A. Efros,et al.  Unbiased look at dataset bias , 2011, CVPR 2011.

[137]  Pascal Vincent,et al.  Generalized Denoising Auto-Encoders as Generative Models , 2013, NIPS.

[138]  L. Stark,et al.  Scanpaths in saccadic eye movements while viewing and recognizing patterns. , 1971, Vision research.

[139]  J. Crowley,et al.  Estimating Face orientation from Robust Detection of Salient Facial Structures , 2004 .

[140]  Takeo Kanade,et al.  Recognizing Action Units for Facial Expression Analysis , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[141]  Jianzhong Wu,et al.  Stacked Sparse Autoencoder (SSAE) for Nuclei Detection on Breast Cancer Histopathology Images , 2016, IEEE Transactions on Medical Imaging.

[142]  Honglak Lee,et al.  An Analysis of Single-Layer Networks in Unsupervised Feature Learning , 2011, AISTATS.

[143]  Pascal Vincent,et al.  Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion , 2010, J. Mach. Learn. Res..

[144]  Jason Williams,et al.  Emotion Recognition Using Bio-sensors: First Steps towards an Automatic System , 2004, ADS.

[145]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[146]  Philip A. Gable,et al.  Does arousal per se account for the influence of appetitive stimuli on attentional scope and the late positive potential? , 2013, Psychophysiology.

[147]  Thierry Dutoit,et al.  Performance of the Emotiv Epoc headset for P300-based applications , 2013, Biomedical engineering online.

[148]  Naoki Tanaka,et al.  Gaze Estimation Method Involving Corneal Reflection-Based Modeling of the Eye as a General Surface of Revolution about the Optical Axis of the Eye , 2012, IEICE Trans. Inf. Syst..

[149]  Deva Ramanan,et al.  Face detection, pose estimation, and landmark localization in the wild , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[150]  Andreas Bulling,et al.  EyeTab: model-based gaze estimation on unmodified tablet computers , 2014, ETRA.

[151]  Michael E. Tipping,et al.  Probabilistic Principal Component Analysis , 1999 .

[152]  Geoffrey E. Hinton,et al.  Reducing the Dimensionality of Data with Neural Networks , 2006, Science.

[153]  Yong Tao,et al.  Compound facial expressions of emotion , 2014, Proceedings of the National Academy of Sciences.

[154]  Jennifer Healey,et al.  Toward Machine Emotional Intelligence: Analysis of Affective Physiological State , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[155]  Maja Pantic,et al.  Joint Facial Action Unit Detection and Feature Fusion: A Multi-conditional Learning Approach. , 2016, IEEE transactions on image processing : a publication of the IEEE Signal Processing Society.

[156]  M. Bartlett,et al.  Automatic Decoding of Facial Movements Reveals Deceptive Pain Expressions , 2014, Current Biology.

[157]  K. H. Kim,et al.  Emotion recognition system using short-term monitoring of physiological signals , 2004, Medical and Biological Engineering and Computing.

[158]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[159]  Tiranee Achalakul,et al.  RapidMiner framework for manufacturing data analysis on the cloud , 2013, The 2013 10th International Joint Conference on Computer Science and Software Engineering (JCSSE).

[160]  Ole Winther,et al.  Auxiliary Deep Generative Models , 2016, ICML.

[161]  Shiguang Shan,et al.  Learning Expressionlets on Spatio-temporal Manifold for Dynamic Facial Expression Recognition , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[162]  Ming-Hsuan Yang,et al.  A direct method for modeling non-rigid motion with thin plate spline , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[163]  G. Fricchione Descartes’ Error: Emotion, Reason and the Human Brain , 1995 .

[164]  Xiaoming Liu,et al.  Generic Face Alignment using Boosted Appearance Model , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[165]  Stefanos Zafeiriou,et al.  300 Faces in-the-Wild Challenge: The First Facial Landmark Localization Challenge , 2013, 2013 IEEE International Conference on Computer Vision Workshops.

[166]  Ross Ihaka,et al.  Gentleman R: R: A language for data analysis and graphics , 1996 .

[167]  Mohammad H. Mahoor,et al.  DISFA: A Spontaneous Facial Action Intensity Database , 2013, IEEE Transactions on Affective Computing.

[168]  Sven Behnke,et al.  Evaluation of Pooling Operations in Convolutional Architectures for Object Recognition , 2010, ICANN.

[169]  Stefanos Zafeiriou,et al.  HOG active appearance models , 2014, 2014 IEEE International Conference on Image Processing (ICIP).

[170]  Nitish Srivastava,et al.  Unsupervised Learning of Video Representations using LSTMs , 2015, ICML.

[171]  Johannes Wagner,et al.  From Physiological Signals to Emotions: Implementing and Comparing Selected Methods for Feature Extraction and Classification , 2005, 2005 IEEE International Conference on Multimedia and Expo.

[172]  Nishio Takayuki,et al.  Deep Learning Tutorial , 2018 .

[173]  Timothy F. Cootes,et al.  Feature Detection and Tracking with Constrained Local Models , 2006, BMVC.

[174]  Myung Jin Chung,et al.  Non-contact eye gaze tracking system by mapping of corneal reflections , 2002, Proceedings of Fifth IEEE International Conference on Automatic Face Gesture Recognition.

[175]  Rosalind W. Picard,et al.  A Wearable Sensor for Unobtrusive, Long-Term Assessment of Electrodermal Activity , 2010, IEEE Transactions on Biomedical Engineering.

[176]  Qiang Ji,et al.  In the Eye of the Beholder: A Survey of Models for Eyes and Gaze , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[177]  Stefan B. Williams,et al.  Multimodal information-theoretic measures for autonomous exploration , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[178]  Jean-Daniel Boissonnat,et al.  Complexity of the delaunay triangulation of points on surfaces the smooth case , 2003, SCG '03.

[179]  Dimitrios Tzovaras,et al.  Automatic Recognition of Boredom in Video Games Using Novel Biosignal Moment-Based Features , 2011, IEEE Transactions on Affective Computing.

[180]  Shin Ishii,et al.  Distributional Smoothing with Virtual Adversarial Training , 2015, ICLR 2016.

[181]  Jakob Nielsen,et al.  Eyetracking Web Usability , 2009 .

[182]  Qiang Ji,et al.  Capturing Global Semantic Relationships for Facial Action Unit Recognition , 2013, 2013 IEEE International Conference on Computer Vision.

[183]  Peter M. Williams,et al.  Matrix logarithm parametrizations for neural network covariance models , 1999, Neural Networks.

[184]  Grigorios Tsoumakas,et al.  Multi-target regression via input space expansion: treating targets as inputs , 2012, Machine Learning.

[185]  Shih-Fu Chang,et al.  Exploiting Feature and Class Relationships in Video Categorization with Regularized Deep Neural Networks , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[186]  L. Deng,et al.  The MNIST Database of Handwritten Digit Images for Machine Learning Research [Best of the Web] , 2012, IEEE Signal Processing Magazine.

[187]  Adam C. Oei,et al.  Enhancing Cognition with Video Games: A Multiple Game Training Study , 2013, PloS one.

[188]  K. Satpayev Kaz Ntu,et al.  Decision Making Procedure: Applications of IBM SPSS Cluster Analysis and Decision Tree , 2013 .

[189]  Rama Chellappa,et al.  Growing Regression Forests by Classification: Applications to Object Pose Estimation , 2013, ECCV.

[190]  James F. O'Brien,et al.  Modelling with implicit surfaces that interpolate , 2005, SIGGRAPH Courses.

[191]  Jaap J. A. Denissen,et al.  The Effects of Weather on Daily Mood: a Multilevel Approach , 2008 .

[192]  Dan E. Tamir,et al.  An effort and time based measure of usability , 2008, WoSQ '08.

[193]  P. De Silva,et al.  Handbook of Cognition and Emotion , 2001 .

[194]  Yoshua Bengio,et al.  Extracting and composing robust features with denoising autoencoders , 2008, ICML '08.

[195]  Olga Sourina,et al.  Real-Time EEG-Based Emotion Recognition and Its Applications , 2011, Trans. Comput. Sci..

[196]  Satoshi Nakamura,et al.  Stochastic Gradient Variational Bayes for deep learning-based ASR , 2015, 2015 IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU).

[197]  Takahiro Okabe,et al.  Adaptive Linear Regression for Appearance-Based Gaze Estimation , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[198]  Yann LeCun,et al.  Pedestrian Detection with Unsupervised Multi-stage Feature Learning , 2012, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[199]  Stephanie Wilson,et al.  Identifying web usability problems from eye-tracking data , 2007, BCS HCI.

[200]  Jürgen Schmidhuber,et al.  Multi-dimensional Recurrent Neural Networks , 2007, ICANN.

[201]  Louis-Philippe Morency,et al.  A multi-label convolutional neural network approach to cross-domain action unit detection , 2015, 2015 International Conference on Affective Computing and Intelligent Interaction (ACII).

[202]  Andrew W. Senior,et al.  Long Short-Term Memory Based Recurrent Neural Network Architectures for Large Vocabulary Speech Recognition , 2014, ArXiv.

[203]  Lourdes Agapito,et al.  Semi-supervised Learning Using an Unsupervised Atlas , 2014, ECML/PKDD.

[204]  Tamás D. Gedeon,et al.  Collecting Large, Richly Annotated Facial-Expression Databases from Movies , 2012, IEEE MultiMedia.

[205]  Christine L. Lisetti,et al.  Using Noninvasive Wearable Computers to Recognize Human Emotions from Physiological Signals , 2004, EURASIP J. Adv. Signal Process..

[206]  Elizabeth A. Krupinski,et al.  Recording and analyzing eye-position data using a microcomputer workstation , 1992 .

[207]  Dorin Comaniciu,et al.  Pairwise Active Appearance Model and Its Application to Echocardiography Tracking , 2006, MICCAI.

[208]  Michalis Nik Xenos,et al.  Evaluating User's Emotional Experience in HCI: The PhysiOBS Approach , 2014, HCI.

[209]  Heiko Neumann,et al.  A comprehensive head pose and gaze database , 2007 .

[210]  Thorsten Meinl,et al.  KNIME-CDK: Workflow-driven cheminformatics , 2013, BMC Bioinformatics.

[211]  Timothy Lethbridge,et al.  Umple as a component-based language for the development of real-time and embedded applications , 2016, 2016 4th International Conference on Model-Driven Engineering and Software Development (MODELSWARD).

[212]  Andrew Zisserman,et al.  Deep Face Recognition , 2015, BMVC.

[213]  P. Shaver,et al.  Emotion knowledge: further exploration of a prototype approach. , 1987, Journal of personality and social psychology.

[214]  Daniel McDuff,et al.  Exploiting sparsity and co-occurrence structure for action unit recognition , 2015, 2015 11th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG).

[215]  Ryan Shaun Joazeiro de Baker,et al.  Automatic Detection of Learning-Centered Affective States in the Wild , 2015, IUI.

[216]  Robert J. K. Jacob,et al.  Eye tracking in human-computer interaction and usability research : Ready to deliver the promises , 2002 .

[217]  Terrence J. Sejnowski,et al.  The “independent components” of natural scenes are edge filters , 1997, Vision Research.

[218]  Andrew T. Duchowski,et al.  Eye Tracking Techniques , 2003 .

[219]  J. Katona,et al.  Evaluation of the NeuroSky MindFlex EEG headset brain waves data , 2014, 2014 IEEE 12th International Symposium on Applied Machine Intelligence and Informatics (SAMI).

[220]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[221]  Masahiro Suzuki,et al.  Joint Multimodal Learning with Deep Generative Models , 2016, ICLR.

[222]  Christos D. Katsis,et al.  Toward Emotion Recognition in Car-Racing Drivers: A Biosignal Processing Approach , 2008, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[223]  Yoichi Sato,et al.  Appearance-Based Gaze Estimation Using Visual Saliency , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[224]  Adeel Javed Complex Flows: Node-RED , 2016 .

[225]  Wil M. P. van der Aalst,et al.  Scientific workflows for process mining: building blocks, scenarios, and implementation , 2015, International Journal on Software Tools for Technology Transfer.

[226]  Tetsuya Takiguchi,et al.  Gaze Estimation Using Regression Analysis and AAMs Parameters Selected Based on Information Criterion , 2010, ACCV Workshops.

[227]  Geoffrey E. Hinton Deep belief networks , 2009, Scholarpedia.

[228]  Martial Hebert,et al.  Semi-Supervised Self-Training of Object Detection Models , 2005, 2005 Seventh IEEE Workshops on Applications of Computer Vision (WACV/MOTION'05) - Volume 1.

[229]  Jakob Nielsen,et al.  Usability engineering , 1997, The Computer Science and Engineering Handbook.

[230]  Stefanos Zafeiriou,et al.  Bayesian Active Appearance Models , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[231]  Thorsten Joachims,et al.  Transductive Inference for Text Classification using Support Vector Machines , 1999, ICML.

[232]  Mohammad Soleymani,et al.  A Multimodal Database for Affect Recognition and Implicit Tagging , 2012, IEEE Transactions on Affective Computing.

[233]  Karen L. Schmidt,et al.  Human facial expressions as adaptations: Evolutionary questions in facial expression research. , 2001, American journal of physical anthropology.

[234]  Jürgen Beyerer,et al.  Realistic heatmap visualization for interactive analysis of 3D gaze data , 2014, ETRA.

[235]  Tao Lin,et al.  Do physiological data relate to traditional usability indexes? , 2005, OZCHI.

[236]  Gillian Dobbie,et al.  Automated Usability Testing Framework , 2008, AUIC.

[237]  Honglak Lee,et al.  Learning Structured Output Representation using Deep Conditional Generative Models , 2015, NIPS.

[238]  Geoff Holmes,et al.  Classifier chains for multi-label classification , 2009, Machine Learning.

[239]  Jürgen Schmidhuber,et al.  Stacked Convolutional Auto-Encoders for Hierarchical Feature Extraction , 2011, ICANN.

[240]  Kazuhiko Takahashi,et al.  Remarks on emotion recognition from multi-modal bio-potential signals , 2004, 2004 IEEE International Conference on Industrial Technology, 2004. IEEE ICIT '04..

[241]  Takeo Kanade,et al.  The Extended Cohn-Kanade Dataset (CK+): A complete dataset for action unit and emotion-specified expression , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Workshops.

[242]  Daan Wierstra,et al.  Stochastic Backpropagation and Approximate Inference in Deep Generative Models , 2014, ICML.