Oxygen isotope evidence from Ryugu samples for early water delivery to Earth by CI chondrites

[1]  A. Davis,et al.  Ryugu's nucleosynthetic heritage from the outskirts of the Solar System. , 2022, Science advances.

[2]  M. K. Kubo,et al.  Formation and evolution of carbonaceous asteroid Ryugu: Direct evidence from returned samples , 2022, Science.

[3]  F. Terui,et al.  Incorporation of 16O-rich anhydrous silicates in the protolith of highly hydrated asteroid Ryugu , 2022, Nature Astronomy.

[4]  A. Tsuchiyama,et al.  A pristine record of outer Solar System materials from asteroid Ryugu’s returned sample , 2022, Nature Astronomy.

[5]  F. Terui,et al.  On the origin and evolution of the asteroid Ryugu: A comprehensive geochemical perspective , 2022, Proceedings of the Japan Academy. Series B, Physical and biological sciences.

[6]  A. Davis,et al.  Samples returned from the asteroid Ryugu are similar to Ivuna-type carbonaceous meteorites , 2022, Science.

[7]  A. Rivkin,et al.  Connecting asteroids and meteorites with visible and near-infrared spectroscopy , 2022, Icarus.

[8]  C. Pilorget,et al.  Preliminary analysis of the Hayabusa2 samples returned from C-type asteroid Ryugu , 2021, Nature Astronomy.

[9]  C. Pilorget,et al.  Spectrally blue hydrated parent body of asteroid (162173) Ryugu , 2021, Nature Communications.

[10]  E. Nakamura,et al.  The Asteroid 162173 Ryugu: a Cometary Origin , 2021, The Astrophysical Journal Letters.

[11]  Y. Ohishi,et al.  Experimental evidence for hydrogen incorporation into Earth’s core , 2021, Nature Communications.

[12]  J. Borovička,et al.  Trajectory and orbit of the unique carbonaceous meteorite Flensburg , 2021, Meteoritics & Planetary Science.

[13]  B. Marty,et al.  Earth’s water may have been inherited from material similar to enstatite chondrite meteorites , 2020, Science.

[14]  A. Yamaguchi,et al.  The most primitive CM chondrites, Asuka 12085, 12169, and 12236, of subtypes 3.0–2.8: Their characteristic features and classification , 2020, Polar Science.

[15]  O. Mori,et al.  Sample collection from asteroid (162173) Ryugu by Hayabusa2: Implications for surface evolution , 2020, Science.

[16]  A. Tsuchiyama,et al.  Three-dimensional microstructure and mineralogy of a cosmic symplectite in the Acfer 094 carbonaceous chondrite: Implication for its origin , 2020, Geochimica et Cosmochimica Acta.

[17]  V. Cnudde,et al.  Cosmic spherules from Widerøefjellet, Sør Rondane Mountains (East Antarctica) , 2020 .

[18]  T. Kleine,et al.  Heterogeneous accretion of Earth inferred from Mo-Ru isotope systematics , 2020, Earth and Planetary Science Letters.

[19]  Martin R. Lee,et al.  The diversity of CM carbonaceous chondrite parent bodies explored using Lewis Cliff 85311 , 2019, Geochimica et Cosmochimica Acta.

[20]  H. Busemann,et al.  The Yamato-type (CY) carbonaceous chondrite group: Analogues for the surface of asteroid Ryugu? , 2019 .

[21]  T. Kleine,et al.  Molybdenum isotopic evidence for the late accretion of outer Solar System material to Earth , 2019, Nature Astronomy.

[22]  M. Bizzarro,et al.  Iron isotope evidence for very rapid accretion and differentiation of the proto-Earth , 2019, Science Advances.

[23]  R. Jaumann,et al.  The geomorphology, color, and thermal properties of Ryugu: Implications for parent-body processes , 2019, Science.

[24]  M. Yamada,et al.  The surface composition of asteroid 162173 Ryugu from Hayabusa2 near-infrared spectroscopy , 2019, Science.

[25]  P. Buseck,et al.  Origin of Earth's Water: Chondritic Inheritance Plus Nebular Ingassing and Storage of Hydrogen in the Core , 2018, Journal of Geophysical Research: Planets.

[26]  J. Berthelier,et al.  16O/18O ratio in water in the coma of comet 67P/Churyumov-Gerasimenko measured with the Rosetta/ROSINA double-focusing mass spectrometer , 2018, Astronomy & Astrophysics.

[27]  J. McIntosh,et al.  The Persistence of Brines in Sedimentary Basins , 2018 .

[28]  Mikael Granvik,et al.  Identification of meteorite source regions in the Solar System , 2018, Icarus.

[29]  I. Franchi,et al.  Oxygen isotopic evidence for accretion of Earth’s water before a high-energy Moon-forming giant impact , 2018, Science Advances.

[30]  I. Franchi,et al.  A mutli-technique search for the most primitive CO chondrites , 2018 .

[31]  S. Karato,et al.  Water in the Earth’s Interior: Distribution and Origin , 2017 .

[32]  C. Alexander The origin of inner Solar System water , 2017, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[33]  D. Brownlee,et al.  Origin of crystalline silicates from Comet 81P/Wild 2: Combined study on their oxygen isotopes and mineral chemistry. , 2017, Earth and planetary science letters.

[34]  I. Franchi,et al.  Melting and differentiation of early-formed asteroids: The perspective from high precision oxygen isotope studies , 2017 .

[35]  I. Franchi,et al.  Elephant Moraine 96029, a very mildly aqueously altered and heated CM carbonaceous chondrite: Implications for the drivers of parent body processing , 2016 .

[36]  F. Stuart,et al.  Triple oxygen isotopic composition of the high- 3 He/ 4 He mantle , 2015 .

[37]  K. Howard,et al.  Modal mineralogy of CI and CI-like chondrites by X-ray diffraction , 2015 .

[38]  D. Vokrouhlický,et al.  In search of the source of asteroid (101955) Bennu: Applications of the stochastic YORP model , 2015 .

[39]  I. Franchi,et al.  A water–ice rich minor body from the early Solar System: The CR chondrite parent asteroid , 2014 .

[40]  M. Zolensky,et al.  The Orgueil meteorite: 150 years of history , 2014 .

[41]  I. Franchi,et al.  Isotopic diversity in interplanetary dust particles and preservation of extreme 16O-depletion , 2014 .

[42]  B. Marty The origins and concentrations of water, carbon, nitrogen and noble gases on Earth , 2014, 1405.6336.

[43]  K. Ohlsson Uncertainty of blank correction in isotope ratio measurement. , 2013, Analytical chemistry.

[44]  F. Moynier,et al.  Geochemistry of CI chondrites: Major and trace elements, and Cu and Zn Isotopes , 2012 .

[45]  D. Britt,et al.  Density, porosity, and magnetic susceptibility of carbonaceous chondrites , 2011 .

[46]  R. C. Wiens,et al.  The Oxygen Isotopic Composition of the Sun Inferred from Captured Solar Wind , 2011, Science.

[47]  Bryan J. Travis,et al.  Fluid flow and chemical alteration in carbonaceous chondrite parent bodies , 2010 .

[48]  R. Coker,et al.  Why aqueous alteration in asteroids was isochemical: High porosity ≠ high permeability , 2009 .

[49]  Ming-Chang Liu,et al.  Isotopic records in CM hibonites: Implications for timescales of mixing of isotope reservoirs in the solar nebula , 2009 .

[50]  S. Itoh,et al.  Remnants of the Early Solar System Water Enriched in Heavy Oxygen Isotopes , 2007, Science.

[51]  C. Floss,et al.  Brecciation and chemical heterogeneities of CI chondrites , 2006 .

[52]  P. Spurný,et al.  The orbit and atmospheric trajectory of the Orgueil meteorite from historical records , 2006 .

[53]  K. Lodders Solar System Abundances and Condensation Temperatures of the Elements , 2003 .

[54]  C. Pillinger,et al.  The oxygen isotopic composition of water from Tagish Lake: Its relationship to low‐temperature phases and to other carbonaceous chondrites , 2002 .

[55]  Giovanni B. Valsecchi,et al.  Source regions and timescales for the delivery of water to the Earth , 2000 .

[56]  R. Clayton,et al.  Oxygen isotope studies of carbonaceous chondrites , 1999 .

[57]  Russell,et al.  Oxygen reservoirs in the early solar nebula inferred from an allende CAI , 1998, Science.

[58]  J. Wasson,et al.  Extreme oxygen-isotope compositions in magnetite from unequilibrated ordinary chondrites , 1998, Nature.

[59]  R. Clayton,et al.  Oxygen isotopes in separated components of CI and CM meteorites , 1994 .

[60]  E. Jarosewich,et al.  Chemical analyses of meteorites: A compilation of stony and iron meteorite analyses , 1990 .

[61]  H. Leroux,et al.  The Paris meteorite, the least altered CM chondrite so far , 2014 .

[62]  Otto Eugster,et al.  Irradiation Records, Cosmic-Ray Exposure Ages, and Transfer Times of Meteorites , 2006 .