A Simple Proof of the Aztec Diamond Theorem
暂无分享,去创建一个
[1] John M. Talbot. The number of k-intersections of an intersecting family of r-sets , 2004, J. Comb. Theory, Ser. A.
[2] Greg Kuperberg,et al. Alternating-Sign Matrices and Domino Tilings (Part I) , 1992 .
[3] J. Propp,et al. Alternating sign matrices and domino tilings , 1991, math/9201305.
[4] N. J. A. Sloane,et al. The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..
[5] Stephen J. Kirkland,et al. Aztec diamonds and digraphs, and Hankel determinants of Schröder numbers , 2005, J. Comb. Theory, Ser. B.
[6] I. Gessel,et al. Binomial Determinants, Paths, and Hook Length Formulae , 1985 .
[7] Zsolt Tuza,et al. Critical hypergraphs and intersecting set-pair systems , 1985, J. Comb. Theory, Ser. B.
[8] M. Aigner. Catalan and other numbers: a recurrent theme , 2001 .
[9] L. Lovász. Combinatorial problems and exercises , 1979 .
[10] Mihai Ciucu,et al. Perfect Matchings of Cellular Graphs , 1996 .
[11] D. White,et al. Constructive combinatorics , 1986 .
[12] Martin Aigner,et al. Catalan-like Numbers and Determinants , 1999, J. Comb. Theory, Ser. A.
[13] Eric Kuo,et al. Applications of graphical condensation for enumerating matchings and tilings , 2003, Theor. Comput. Sci..
[14] P. Erdös,et al. INTERSECTION THEOREMS FOR SYSTEMS OF FINITE SETS , 1961 .