A High-Precision and High-Bandwidth MEMS-Based Capacitive Accelerometer

In this paper, we present a capacitive, MEMS-based accelerometer comprising an ultra-low noise CMOS integrated readout-IC and a high-precision bulk micro machined sensing element. The resulting accelerometer reaches an acceleration equivalent noise of only 200 ng/<inline-formula> <tex-math notation="LaTeX">$\surd $ </tex-math></inline-formula>Hz, which makes it suitable for seismic measurement that require noise levels significantly below 1 <inline-formula> <tex-math notation="LaTeX">$\mu \text{g}/\surd $ </tex-math></inline-formula>Hz. In addition, a high bandwidth of more than 5 kHz was achieved, which also makes the presented sensor system applicable for high-frequency measurements, e.g., in predictive maintenance applications for rotating machinery. The design of the sensing element and readout IC is presented in detail, and measurement results are shown which demonstrate the performance of the sensor system.

[1]  Kuei-Ann Wen,et al.  A monolithic CMOS MEMS accelerometer with chopper correlated double sampling readout circuit , 2011, 2011 IEEE International Symposium of Circuits and Systems (ISCAS).

[2]  Liang Yin,et al.  A Closed-Loop $\Sigma\Delta$ Interface for a High-Q Micromechanical Capacitive Accelerometer With 200 ng/$ \surd$Hz Input Noise Density , 2015, IEEE Journal of Solid-State Circuits.

[3]  Jr. W.M. Leach,et al.  On the calculation of noise in multistage amplifiers , 1995 .

[4]  Haigang Yang,et al.  Noise Analysis and Simulation of Chopper Amplifier , 2006, APCCAS 2006 - 2006 IEEE Asia Pacific Conference on Circuits and Systems.

[5]  E. Vittoz,et al.  A CMOS Chopper Amplifier , 1986, ESSCIRC '86: Twelfth European Solid-State Circuits Conference.

[6]  M. Kraft,et al.  Low noise vacuum MEMS closed-loop accelerometer using sixth-order multi-feedback loops and local resonator sigma delta modulator , 2014, 2014 IEEE 27th International Conference on Micro Electro Mechanical Systems (MEMS).

[7]  Jung-Suk Goo,et al.  Physical origin of the excess thermal noise in short channel MOSFETs , 2001, IEEE Electron Device Letters.

[8]  Farrokh Ayazi,et al.  Micromachined inertial sensors , 1998, Proc. IEEE.

[9]  N. Yazdi,et al.  Precision readout circuits for capacitive microaccelerometers , 2004, Proceedings of IEEE Sensors, 2004..

[10]  T. Gabrielson Mechanical-thermal noise in micromachined acoustic and vibration sensors , 1993 .

[11]  Rainer Kokozinski,et al.  An ultra-low noise capacitance to voltage converter for sensor applications in 0.35 µm CMOS , 2017 .

[12]  M. Kraft,et al.  A dicing free SOI process for MEMS devices , 2012 .

[13]  Steve Lacey The role of vibration monitoring in predictive maintenance Part 1: Principles and Practice , 2010 .

[14]  Jonathan J. Bernstein,et al.  Low-noise MEMS vibration sensor for geophysical applications , 1999 .

[15]  S. J. Lacey,et al.  An Overview of Bearing Vibration Analysis , 2008 .

[16]  Gabor C. Temes,et al.  Circuit techniques for reducing the effects of op-amp imperfections: autozeroing, correlated double sampling, and chopper stabilization , 1996, Proc. IEEE.

[17]  Kari Halonen,et al.  Continuous-time interface for a micromachined capacitive accelerometer with NEA of 4 μg and bandwidth of 300 Hz , 2009 .

[18]  Minkyu Je,et al.  118-dB dynamic range, continuous-time, opened-loop capactance to voltage converter readout for capacitive MEMS accelerometer , 2010, 2010 IEEE Asian Solid-State Circuits Conference.

[19]  F. Rudolf,et al.  New generation of high performance/high reliability MEMS accelerometers for harsh environment , 2014, 2014 IEEE/ION Position, Location and Navigation Symposium - PLANS 2014.

[20]  Okechukwu Anthony Onwuachi Noise in operational amplifier circuits , 1985 .