Comparison of least squares Monte Carlo methods with applications to energy real options

Least squares Monte Carlo (LSM) is a state-of-the-art approximate dynamic programming approach used in financial engineering and real options to value and manage options with early or multiple exercise opportunities. It is also applicable to capacity investment and inventory/production management problems with demand/supply forecast updates arising in operations and hydropower-reservoir management. LSM has two variants, referred to as regress-now/later (LSMN/L), which compute continuation/value function approximations (C/VFAs). We provide novel numerical evidence for the relative performance of these methods applied to energy swing and storage options, two typical real options, using a common price evolution model. LSMN/L estimate C/VFAs that yield equally accurate (near optimal) and precise lower and dual (upper) bounds on the value of these real options. Estimating the LSMN/L C/VFAs and their associated lower bounds takes similar computational effort. In contrast, the estimation of a dual bound using the LSML VFA instead of the LSMN CFA takes seconds rather than minutes or hours. This finding suggests the use of LSML in lieu of LSMN when estimating dual bounds on the value of early or multiple exercise options, as well as of related capacity investment and inventory/production policies. © 2016 Elsevier B.V. All rights reserved.

[1]  Patrick Jaillet,et al.  Valuation of Commodity-Based Swing Options , 2004, Manag. Sci..

[2]  Tetsuo Iida,et al.  Approximate Solutions of a Dynamic Forecast-Inventory Model , 2006, Manuf. Serv. Oper. Manag..

[3]  Amitabh Sinha,et al.  Integrated Optimization of Procurement, Processing, and Trade of Commodities , 2011, Oper. Res..

[4]  Nicola Secomandi,et al.  An Approximate Dynamic Programming Approach to Benchmark Practice-Based Heuristics for Natural Gas Storage Valuation , 2010, Oper. Res..

[5]  Nicola Secomandi,et al.  Relaxations of Approximate Linear Programs for the Real Option Management of Commodity Storage , 2015, Manag. Sci..

[6]  Vivek F. Farias,et al.  Pathwise Optimization for Optimal Stopping Problems , 2012, Manag. Sci..

[7]  James E. Smith,et al.  Alternative Approaches for Solving Real-Options Problems: (Comment on Brandão et al. 2005) , 2005, Decis. Anal..

[8]  Henning Rasmussen,et al.  Valuation and Optimal Operation of Electric Power Plants in Competitive Markets , 2004, Oper. Res..

[9]  Nicola Secomandi,et al.  Real Options and Merchant Operations of Energy and Other Commodities , 2014, Found. Trends Technol. Inf. Oper. Manag..

[10]  Mark Broadie,et al.  A Primal-Dual Simulation Algorithm for Pricing Multi-Dimensional American Options , 2001 .

[11]  Alexander Boogert,et al.  Gas Storage Valuation Using a Monte Carlo Method , 2008 .

[12]  Stephen C. Graves,et al.  TWO-STAGE PRODUCTION PLANNING IN A DYNAMIC ENVIRONMENT , 1985 .

[13]  Dalila B. M. M. Fontes,et al.  Fixed versus flexible production systems: A real options analysis , 2008, Eur. J. Oper. Res..

[14]  Martin B. Haugh,et al.  A unified approach to multiple stopping and duality , 2012, Oper. Res. Lett..

[15]  Alexander J. Triantis,et al.  Valuing Flexibility as a Complex Option , 1990 .

[16]  Trine Krogh Boomsma,et al.  Renewable energy investments under different support schemes: A real options approach , 2012, Eur. J. Oper. Res..

[17]  John N. Tsitsiklis,et al.  Regression methods for pricing complex American-style options , 2001, IEEE Trans. Neural Networks.

[18]  Alan Scheller-Wolf,et al.  Merchant Commodity Storage and Term-Structure Model Error , 2015, Manuf. Serv. Oper. Manag..

[19]  Dean Paxson,et al.  Reciprocal Energy-switching Options , 2011 .

[20]  Christoph Weber,et al.  Gas storage valuation applying numerically constructed recombining trees , 2012, Eur. J. Oper. Res..

[21]  HO THOMASS.Y.,et al.  Term Structure Movements and Pricing Interest Rate Contingent Claims , 2007 .

[22]  Matt Thompson,et al.  Optimal Economic Dispatch and Risk Management of Thermal Power Plants in Deregulated Markets , 2013, Oper. Res..

[23]  Lara Khansa,et al.  Valuing the flexibility of investing in security process innovations , 2009, Eur. J. Oper. Res..

[24]  Panos Kouvelis,et al.  Supply Chain Management Research and Production and Operations Management: Review, Trends, and Opportunities , 2006 .

[25]  Alan Scheller-Wolf,et al.  Interaction between technology and extraction scaling real options in natural gas production , 2010 .

[26]  J. Carriére Valuation of the early-exercise price for options using simulations and nonparametric regression , 1996 .

[27]  D. Heath,et al.  Modelling the evolution of demand forecasts with application to safety stock analysis in production distribution systems , 1994 .

[28]  Gonzalo Cortazar,et al.  The valuation of multidimensional American real options using the LSM simulation method , 2008, Comput. Oper. Res..

[29]  Miriam Hodge A radial basis function approach to gas storage valuation , 2013 .

[30]  Stein-Erik Fleten,et al.  Linepack storage valuation under price uncertainty , 2013 .

[31]  James S. Dyer,et al.  Discrete time modeling of mean-reverting stochastic processes for real option valuation , 2008, Eur. J. Oper. Res..

[32]  M. Broadie,et al.  Improved lower and upper bound algorithms for pricing American options by simulation , 2008 .

[33]  James S. Dyer,et al.  A Discrete Time Approach for Modeling Two-Factor Mean-Reverting Stochastic Processes , 2011, Decis. Anal..

[34]  J. Birge,et al.  Duality Theory and Approximate Dynamic Programming for Pricing American Options and Portfolio Optimization 1 , 2007 .

[35]  Nicola Secomandi,et al.  Optimal Commodity Trading with a Capacitated Storage Asset , 2010, Manag. Sci..

[36]  R. Carmona,et al.  Valuation of energy storage: an optimal switching approach , 2010 .

[37]  Francis A. Longstaff,et al.  Valuing American Options by Simulation: A Simple Least-Squares Approach , 2001 .

[38]  Derek D. Wang,et al.  Seasonal Energy Storage Operations with Limited Flexibility: The Price-Adjusted Rolling Intrinsic Policy , 2012, Manuf. Serv. Oper. Manag..

[39]  Eduardo S. Schwartz,et al.  The Valuation of Commodity Contingent Claims , 1994 .

[40]  Tong Wang,et al.  A Multiordering Newsvendor Model with Dynamic Forecast Evolution , 2012, Manuf. Serv. Oper. Manag..

[41]  Hao Wang,et al.  Generalized martingale model of the uncertainty evolution of streamflow forecasts , 2013 .

[42]  Lars Stentoft,et al.  A simulation-and-regression approach for stochastic dynamic programs with endogenous state variables , 2011, Comput. Oper. Res..

[43]  Paul Glasserman,et al.  Simulation for American Options: Regression Now or Regression Later? , 2004 .

[44]  Genaro J. Gutierrez,et al.  Multiechelon Procurement and Distribution Policies for Traded Commodities , 2011, Manag. Sci..

[45]  Ximing Cai,et al.  Effect of streamflow forecast uncertainty on real-time reservoir operation , 2010 .

[46]  Peng Sun,et al.  Information Relaxations and Duality in Stochastic Dynamic Programs , 2010, Oper. Res..

[47]  James S. Dyer,et al.  Using Binomial Decision Trees to Solve Real-Option Valuation Problems , 2005, Decis. Anal..

[48]  James E. Smith,et al.  Valuing Oil Properties: Integrating Option Pricing and Decision Analysis Approaches , 1998, Oper. Res..

[49]  James S. Dyer,et al.  Valuing Multifactor Real Options Using an Implied Binomial Tree , 2010, Decis. Anal..

[50]  Alexander Boogert,et al.  Gas storage valuation using a multifactor price process , 2011 .

[51]  Jan Hendrik Witte,et al.  Monte Carlo methods via a dual approach for some discrete time stochastic control problems , 2015, Math. Methods Oper. Res..

[52]  Nicole Bäuerle,et al.  Gas storage valuation with regime switching , 2014 .