An IMEX-Scheme for Pricing Options under Stochastic Volatility Models with Jumps
暂无分享,去创建一个
[1] S. Ikonen,et al. Efficient numerical methods for pricing American options under stochastic volatility , 2008 .
[2] Steven Kou,et al. A Jump Diffusion Model for Option Pricing , 2001, Manag. Sci..
[3] G. Meyer,et al. The Evaluation of American Option Prices Under Stochastic Volatility and Jump-Diffusion Dynamics Using the Method of Lines , 2008 .
[4] Younhee Lee,et al. A Second-Order Tridiagonal Method for American Options under Jump-Diffusion Models , 2011, SIAM J. Sci. Comput..
[5] Jari Toivanen,et al. COMPONENTWISE SPLITTING METHODS FOR PRICING AMERICAN OPTIONS UNDER STOCHASTIC VOLATILITY , 2007 .
[6] Jari Toivanen. A Componentwise Splitting Method for Pricing American Options Under the Bates Model , 2010 .
[7] Xiao-Qing Jin,et al. Quadratic finite element and preconditioning methods for options pricing in the SVCJ model , 2014 .
[8] Muddun Bhuruth,et al. High-order computational methods for option valuation under multifactor models , 2013, Eur. J. Oper. Res..
[9] Gabriel Wittum,et al. On multigrid for anisotropic equations and variational inequalities “Pricing multi-dimensional European and American options” , 2004 .
[10] Cornelis W. Oosterlee,et al. Numerical valuation of options with jumps in the underlying , 2005 .
[11] M. Giles,et al. Convergence analysis of Crank-Nicolson and Rannacher time-marching , 2006 .
[12] R. C. Merton,et al. Theory of Rational Option Pricing , 2015, World Scientific Reference on Contingent Claims Analysis in Corporate Finance.
[13] Jari Toivanen,et al. Operator splitting methods for pricing American options under stochastic volatility , 2009, Numerische Mathematik.
[14] D. Duffie,et al. Transform Analysis and Asset Pricing for Affine Jump-Diffusions , 1999 .
[15] David S. Bates. Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options , 1998 .
[16] Steven G. Johnson,et al. The Design and Implementation of FFTW3 , 2005, Proceedings of the IEEE.
[17] Rama Cont,et al. A Finite Difference Scheme for Option Pricing in Jump Diffusion and Exponential Lévy Models , 2005, SIAM J. Numer. Anal..
[18] R. C. Merton,et al. Option pricing when underlying stock returns are discontinuous , 1976 .
[19] O. Pironneau,et al. Computational Methods for Option Pricing (Frontiers in Applied Mathematics) (Frontiers in Applied Mathematics 30) , 2005 .
[20] A. George. Nested Dissection of a Regular Finite Element Mesh , 1973 .
[21] Jonas Persson,et al. Space-time adaptive finite difference method for European multi-asset options , 2007, Comput. Math. Appl..
[22] M. Yor,et al. The Fine Structure of Asset Retums : An Empirical Investigation ' , 2006 .
[23] Kazufumi Ito,et al. Lagrange Multiplier Approach with Optimized Finite Difference Stencils for Pricing American Options under Stochastic Volatility , 2009, SIAM J. Sci. Comput..
[24] Willem Hundsdorfer,et al. Stability of implicit-explicit linear multistep methods , 1997 .
[25] Jari Toivanen,et al. IMEX schemes for pricing options under jump-diffusion models , 2014 .
[26] Jari Toivanen,et al. An Iterative Method for Pricing American Options Under Jump-Diffusion Models , 2011 .
[27] Jari Toivanen,et al. A Projected Algebraic Multigrid Method for Linear Complementarity Problems , 2011 .
[28] S. Heston. A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options , 1993 .
[29] Jonas Persson,et al. A highly accurate adaptive finite difference solver for the Black–Scholes equation , 2009, Int. J. Comput. Math..
[30] Erik Ekström,et al. The Black–Scholes equation in stochastic volatility models , 2010 .
[31] Vadim Linetsky,et al. Pricing Options in Jump-Diffusion Models: An Extrapolation Approach , 2008, Oper. Res..
[32] Timothy A. Davis,et al. Algorithm 832: UMFPACK V4.3---an unsymmetric-pattern multifrontal method , 2004, TOMS.
[33] Luca Vincenzo Ballestra,et al. The evaluation of American options in a stochastic volatility model with jumps: An efficient finite element approach , 2010, Comput. Math. Appl..
[34] Jari Toivanen,et al. Operator splitting methods for American option pricing , 2004, Appl. Math. Lett..
[35] Nicholas G. Polson,et al. The Impact of Jumps in Volatility and Returns , 2000 .
[36] Younhee Lee,et al. A Second-order Finite Difference Method for Option Pricing Under Jump-diffusion Models , 2011, SIAM J. Numer. Anal..
[37] Jari Toivanen,et al. Comparison and survey of finite difference methods for pricing American options under finite activity jump-diffusion models , 2012, Int. J. Comput. Math..
[38] David S. Bates. Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Thephlx Deutschemark Options , 1993 .
[39] Kevin Parrott,et al. Multigrid for American option pricing with stochastic volatility , 1999 .
[40] G. Papanicolaou,et al. Derivatives in Financial Markets with Stochastic Volatility , 2000 .
[41] R. Rannacher. Finite element solution of diffusion problems with irregular data , 1984 .
[42] C. Cryer. The Solution of a Quadratic Programming Problem Using Systematic Overrelaxation , 1971 .
[43] Xiao-Qing Jin,et al. Quadratic Finite Element and Preconditioning for Options Pricing in the SVCJ Model , 2011 .
[44] E. Miglio,et al. A finite element discretization method for option pricing with the Bates model , 2011 .
[45] F. Black,et al. The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.
[46] Jonas Persson,et al. Pricing European multi-asset options using a space-time adaptive FD-method , 2007 .
[47] Curt Randall,et al. Pricing Financial Instruments: The Finite Difference Method , 2000 .
[48] A. Brandt,et al. Multigrid Algorithms for the Solution of Linear Complementarity Problems Arising from Free Boundary Problems , 1983 .
[49] Peter A. Forsyth,et al. Penalty methods for American options with stochastic volatility , 1998 .
[50] Cornelis W. Oosterlee,et al. On multigrid for linear complementarity problems with application to American-style options. , 2003 .
[51] D. Bartuschat. Algebraic Multigrid , 2007 .
[52] Jonas Persson,et al. Pricing American options using a space-time adaptive finite difference method , 2010, Math. Comput. Simul..
[53] Steven J. Ruuth,et al. Implicit-explicit methods for time-dependent partial differential equations , 1995 .
[54] J. W. Ruge,et al. 4. Algebraic Multigrid , 1987 .
[55] R. Cont,et al. Financial Modelling with Jump Processes , 2003 .
[56] Lina von Sydow,et al. Iterative Methods for Pricing American Options under the Bates Model , 2013, ICCS.