Deciphering the dynamic molecular program of radiation-induced endothelial senescence.

[1]  Stephen L. Brown,et al.  Therapy-Induced Senescence: Opportunities to Improve Anticancer Therapy , 2021, Journal of the National Cancer Institute.

[2]  D. Bernard,et al.  Elimination of Senescent Endothelial Cells: Good or Bad Idea? , 2021, Trends in cell biology.

[3]  K. Kwon,et al.  CD9 induces cellular senescence and aggravates atherosclerotic plaque formation , 2020, Cell Death & Differentiation.

[4]  E. Deutsch,et al.  Radiotherapy–immunotherapy combinations – perspectives and challenges , 2020, Molecular oncology.

[5]  W. Quax,et al.  Regulation of Survival Networks in Senescent Cells: From Mechanisms to Interventions. , 2019, Journal of molecular biology.

[6]  R. Baumgartner,et al.  Prevention of radiotherapy-induced arterial inflammation by interleukin-1 blockade , 2019, European heart journal.

[7]  Yun Wang,et al.  Protective effect of rapamycin on endothelial-to-mesenchymal transition in HUVECs through the Notch signaling pathway. , 2019, Vascular pharmacology.

[8]  F. Milliat,et al.  Lung Stereotactic Arc Therapy in Mice: Development of Radiation Pneumopathy and Influence of HIF-1α Endothelial Deletion. , 2019, International journal of radiation oncology, biology, physics.

[9]  J. Mallm,et al.  HMGB2 Loss upon Senescence Entry Disrupts Genomic Organization and Induces CTCF Clustering across Cell Types. , 2018, Molecular cell.

[10]  F. Milliat,et al.  The importance of the vascular endothelial barrier in the immune-inflammatory response induced by radiotherapy. , 2018, The British journal of radiology.

[11]  J. Gil,et al.  Mechanisms and functions of cellular senescence. , 2018, The Journal of clinical investigation.

[12]  E. O'Duibhir,et al.  Paracrine cellular senescence exacerbates biliary injury and impairs regeneration , 2018, Nature Communications.

[13]  M. Iruela-Arispe,et al.  HIF-1α Deletion in the Endothelium, but Not in the Epithelium, Protects From Radiation-Induced Enteritis , 2017, Cellular and molecular gastroenterology and hepatology.

[14]  D. Citrin,et al.  Inhibition of Bcl-2/xl With ABT-263 Selectively Kills Senescent Type II Pneumocytes and Reverses Persistent Pulmonary Fibrosis Induced by Ionizing Radiation in Mice. , 2017, International journal of radiation oncology, biology, physics.

[15]  S. Melov,et al.  Unmasking Transcriptional Heterogeneity in Senescent Cells , 2017, Current Biology.

[16]  M. Iruela-Arispe,et al.  Endothelial Hey2 deletion reduces endothelial-to-mesenchymal transition and mitigates radiation proctitis in mice , 2017, Scientific Reports.

[17]  F. Paris,et al.  Ionizing radiation induces long‐term senescence in endothelial cells through mitochondrial respiratory complex II dysfunction and superoxide generation , 2017, Free radical biology & medicine.

[18]  L. Zender,et al.  The senescence-associated secretory phenotype induces cellular plasticity and tissue regeneration , 2017, Genes & development.

[19]  James B. Mitchell,et al.  Mammalian Target of Rapamycin Inhibition With Rapamycin Mitigates Radiation-Induced Pulmonary Fibrosis in a Murine Model. , 2016, International journal of radiation oncology, biology, physics.

[20]  M. Boerma,et al.  Ionizing Radiation-Induced Endothelial Cell Senescence and Cardiovascular Diseases , 2016, Radiation Research.

[21]  M. Iruela-Arispe,et al.  In vivo evidence for an endothelium-dependent mechanism in radiation-induced normal tissue injury , 2015, Scientific Reports.

[22]  F. Milliat,et al.  Identification of Endothelial-to-Mesenchymal Transition as a Potential Participant in Radiation Proctitis. , 2015, The American journal of pathology.

[23]  M. Humbert,et al.  Endothelial-to-Mesenchymal Transition in Pulmonary Hypertension , 2015, Circulation.

[24]  J. Hoeijmakers,et al.  An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. , 2014, Developmental cell.

[25]  D. Harats,et al.  Interleukin-1 deficiency prolongs ovarian lifespan in mice , 2014, Proceedings of the National Academy of Sciences.

[26]  K. Raj,et al.  Premature aging induced by radiation exhibits pro-atherosclerotic effects mediated by epigenetic activation of CD44 expression , 2014, Aging cell.

[27]  F. Milliat,et al.  PAI-1-Dependent Endothelial Cell Death Determines Severity of Radiation-Induced Intestinal Injury , 2012, PloS one.

[28]  C. A. de la Motte,et al.  Inflammation-induced endothelial-to-mesenchymal transition: a novel mechanism of intestinal fibrosis. , 2011, The American journal of pathology.

[29]  R. Sen,et al.  Faculty Opinions recommendation of Cell surface-bound IL-1alpha is an upstream regulator of the senescence-associated IL-6/IL-8 cytokine network. , 2010 .

[30]  J. Campisi,et al.  Protocols to detect senescence-associated beta-galactosidase (SA-βgal) activity, a biomarker of senescent cells in culture and in vivo , 2009, Nature Protocols.

[31]  F. Milliat,et al.  Effects of pharmacological inhibition and genetic deficiency of plasminogen activator inhibitor-1 in radiation-induced intestinal injury. , 2009, International journal of radiation oncology, biology, physics.

[32]  D. Peeper,et al.  Senescence-messaging secretome: SMS-ing cellular stress , 2009, Nature Reviews Cancer.

[33]  J. Erusalimsky Vascular endothelial senescence: from mechanisms to pathophysiology. , 2009, Journal of applied physiology.

[34]  E. Deutsch,et al.  Gastrointestinal , Hepatobiliary and Pancreatic Pathology Essential Role of Plasminogen Activator Inhibitor Type-1 in Radiation Enteropathy , 2010 .

[35]  J. Erusalimsky From Mechanisms to Pathophysiology , 2008 .

[36]  Xueli Yuan,et al.  Endothelial-to-mesenchymal transition contributes to cardiac fibrosis , 2007, Nature Medicine.

[37]  Zvi Fuks,et al.  Endothelial Apoptosis as the Primary Lesion Initiating Intestinal Radiation Damage in Mice , 2001, Science.