Non-linear calibration models for near infrared spectroscopy.

[1]  A. Savitzky,et al.  Smoothing and Differentiation of Data by Simplified Least Squares Procedures. , 1964 .

[2]  S. Wold,et al.  The multivariate calibration problem in chemistry solved by the PLS method , 1983 .

[3]  P. Geladi,et al.  Linearization and Scatter-Correction for Near-Infrared Reflectance Spectra of Meat , 1985 .

[4]  James W. McNicol,et al.  The Use of Principal Components in the Analysis of Near-Infrared Spectra , 1985 .

[5]  B. Kowalski,et al.  Partial least-squares regression: a tutorial , 1986 .

[6]  P. Williams,et al.  Near-Infrared Technology in the Agricultural and Food Industries , 1987 .

[7]  R. Barnes,et al.  Standard Normal Variate Transformation and De-Trending of Near-Infrared Diffuse Reflectance Spectra , 1989 .

[8]  S. Wold,et al.  Nonlinear PLS modeling , 1989 .

[9]  H. H. Thodberg,et al.  Optimal minimal neural interpretation of spectra , 1992 .

[10]  David J. C. MacKay,et al.  Bayesian Interpolation , 1992, Neural Computation.

[11]  D. Mackay,et al.  Bayesian methods for adaptive models , 1992 .

[12]  M. Almond,et al.  Book reviewPractical NIR spectroscopy: By B. G. Osborne, T. Fearn & P. H. Hindle. Longmans, UK, 1993. 227pp. ISBN 0582-099463. Price: £65.00 , 1994 .

[13]  David Mackay,et al.  Probable networks and plausible predictions - a review of practical Bayesian methods for supervised neural networks , 1995 .

[14]  B. Kowalski,et al.  ChemNets: Theory and Application , 1995 .

[15]  Paul J. Lewi,et al.  Pattern recognition, reflections from a chemometric point of view , 1995 .

[16]  Geoffrey E. Hinton,et al.  Bayesian Learning for Neural Networks , 1995 .

[17]  Hans Henrik Thodberg,et al.  A review of Bayesian neural networks with an application to near infrared spectroscopy , 1996, IEEE Trans. Neural Networks.

[18]  W. Friesen Qualitative Analysis of Oil Sand Slurries Using On-Line NIR Spectroscopy , 1996 .

[19]  Jan Larsen,et al.  DESIGN OF NEURAL NETWORK FILTERS , 1996 .

[20]  Lars Kai Hansen,et al.  Optimization of recurrent neural networks for time series modeling , 1997 .

[21]  Geoffrey E. Hinton,et al.  Evaluation of Gaussian processes and other methods for non-linear regression , 1997 .

[22]  D. Mackay,et al.  Introduction to Gaussian processes , 1998 .

[23]  Christopher K. I. Williams Computation with Infinite Neural Networks , 1998, Neural Computation.

[24]  Abdul Rahman Mohamed,et al.  Neural networks for the identification and control of blast furnace hot metal quality , 2000 .

[25]  Hans Bruun Nielsen,et al.  UCMINF - an Algorithm for Unconstrained, Nonlinear Optimization , 2000 .

[26]  Michael E. Tipping Sparse Bayesian Learning and the Relevance Vector Machine , 2001, J. Mach. Learn. Res..

[27]  Roman Rosipal,et al.  Kernel Partial Least Squares Regression in Reproducing Kernel Hilbert Space , 2002, J. Mach. Learn. Res..

[28]  R. Braatz,et al.  Solute concentration prediction using chemometrics and ATR-FTIR spectroscopy , 2001 .

[29]  Ian T. Nabney,et al.  Netlab: Algorithms for Pattern Recognition , 2002 .

[30]  M. Dyrby,et al.  Chemometric Quantitation of the Active Substance (Containing C≡N) in a Pharmaceutical Tablet Using Near-Infrared (NIR) Transmittance and NIR FT-Raman Spectra , 2002 .

[31]  Johan A. K. Suykens,et al.  Least Squares Support Vector Machines , 2002 .

[32]  H. Martens,et al.  Near-Infrared Absorption and Scattering Separated by Extended Inverted Signal Correction (EISC): Analysis of Near-Infrared Transmittance Spectra of Single Wheat Seeds , 2002 .

[33]  Nello Cristianini,et al.  Kernel Methods for Pattern Analysis , 2003, ICTAI.

[34]  L. Buydens,et al.  Comparing support vector machines to PLS for spectral regression applications , 2004 .

[35]  L. Buydens,et al.  Multivariate calibration with least-squares support vector machines. , 2004, Analytical chemistry.

[36]  John H. Kalivas,et al.  Ridge regression optimization using a harmonious approach , 2004 .

[37]  B. Walczak,et al.  About kernel latent variable approaches and SVM , 2005 .

[38]  Carl E. Rasmussen,et al.  A Unifying View of Sparse Approximate Gaussian Process Regression , 2005, J. Mach. Learn. Res..

[39]  John H. Kalivas,et al.  Tikhonov regularization in standardized and general form for multivariate calibration with application towards removing unwanted spectral artifacts , 2006 .

[40]  J Kocijan,et al.  Application of Gaussian processes for black-box modelling of biosystems. , 2007, ISA transactions.

[41]  E. Martin,et al.  Gaussian process regression for multivariate spectroscopic calibration , 2007 .

[42]  Huirong Xu,et al.  Near infrared spectroscopy for on/in-line monitoring of quality in foods and beverages: A review , 2008 .

[43]  Isneri Talavera,et al.  Relevance vector machines for multivariate calibration purposes , 2008 .

[44]  Elaine Martin,et al.  Bayesian linear regression and variable selection for spectroscopic calibration. , 2009, Analytica chimica acta.

[45]  Tao Chen,et al.  Bagging for Gaussian process regression , 2009, Neurocomputing.

[46]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[47]  Gordon Lightbody,et al.  Gaussian process approach for modelling of nonlinear systems , 2009, Eng. Appl. Artif. Intell..

[48]  Licínia O. Rodrigues,et al.  Chemometrics Role within the PAT Context: Examples from Primary Pharmaceutical Manufacturing , 2009 .

[49]  Katherine A. Bakeev Process analytical technology : spectroscopic tools and implementation strategies for the chemical and pharmaceutical industries , 2010 .

[50]  J. Suykens,et al.  A tutorial on support vector machine-based methods for classification problems in chemometrics. , 2010, Analytica chimica acta.

[51]  Jus Kocijan,et al.  Dynamical systems identification using Gaussian process models with incorporated local models , 2011, Eng. Appl. Artif. Intell..

[52]  Ke Wang,et al.  Bagging for robust non-linear multivariate calibration of spectroscopy , 2011 .

[53]  Aki Vehtari,et al.  Robust Gaussian Process Regression with a Student-t Likelihood , 2011, J. Mach. Learn. Res..

[54]  Soon Keat Tan,et al.  Recursive GPR for nonlinear dynamic process modeling , 2011 .

[55]  P Dardenne,et al.  Comparison of various chemometric approaches for large near infrared spectroscopic data of feed and feed products. , 2011, Analytica chimica acta.

[56]  Guoyi Chi,et al.  Multivariate Calibration of Near Infrared Spectroscopy in the Presence of Light Scattering Effect: A Comparative Study , 2011 .

[57]  Roman M. Balabin,et al.  Support vector machine regression (SVR/LS-SVM)--an alternative to neural networks (ANN) for analytical chemistry? Comparison of nonlinear methods on near infrared (NIR) spectroscopy data. , 2011, The Analyst.

[58]  Lu Liu,et al.  Improved prediction of biomass composition for switchgrass using reproducing kernel methods with wavelet compressed FT-NIR spectra , 2012, Expert Syst. Appl..

[59]  Soon Keat Tan,et al.  Moving-Window GPR for Nonlinear Dynamic System Modeling with Dual Updating and Dual Preprocessing , 2012 .