Galerkin Methods for Parabolic and Schrödinger Equations with Dynamical Boundary Conditions and Applications to Underwater Acoustics

In this paper we consider Galerkin-finite element methods that approximate the solutions of initial-boundary-value problems in one space dimension for parabolic and Schrodinger evolution equations with dynamical boundary conditions. Error estimates of optimal rates of convergence in $L^2$ and $H^1$ are proved for the associated semidiscrete and fully discrete Crank-Nicolson-Galerkin approximations. The problem involving the Schrodinger equation is motivated by considering the standard “parabolic” (paraxial) approximation to the Helmholtz equation, used in underwater acoustics to model long-range sound propagation in the sea, in the specific case of a domain with a rigid bottom of variable topography. This model is contrasted with alternative ones that avoid the dynamical bottom boundary condition and are shown to yield qualitatively better approximations. In the (real) parabolic case, numerical approximations are considered for dynamical boundary conditions of reactive and dissipative type.

[1]  V. A. Dougalis,et al.  On a class of conservative, highly accurate Galerkin methods for the Schrödinger equation , 1991 .

[2]  Mary F. Wheeler,et al.  $L_\infty $ Estimates of Optimal Orders for Galerkin Methods for One-Dimensional Second Order Parabolic and Hyperbolic Equations , 1973 .

[3]  J. Lions,et al.  Problèmes aux limites non homogènes et applications , 1968 .

[4]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[5]  Heinz-Otto Kreiss,et al.  Boundary conditions for the parabolic equation in a range‐dependent duct , 1990 .

[6]  Frédéric Sturm Modelisation mathematique et numerique d'un probleme de propagation en acoustique sous-marine : prise en compte d'un environnement variable tridimensionnel , 1997 .

[7]  John A. Ekaterinaris,et al.  Effective Computational Methods for Wave Propagation , 2008 .

[8]  S. T. McDaniel,et al.  Ocean Acoustic Propagation by Finite Difference Methods , 1988 .

[9]  Ding Lee,et al.  Finite‐difference solution to the parabolic wave equation , 1981 .

[10]  Georgios E. Zouraris,et al.  Numerical Solution of the Parabolic Equation in Range‚ÄìDependent Waveguides , 2008 .

[11]  J. Bramble,et al.  Estimation of Linear Functionals on Sobolev Spaces with Application to Fourier Transforms and Spline Interpolation , 1970 .

[12]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[13]  Heinz-Otto Kreiss,et al.  The initial boundary value problem for the Schröudinger equation , 1990 .

[14]  Fred D. Tappert,et al.  The parabolic approximation method , 1977 .

[15]  Juan Luis Vázquez,et al.  Heat Equation with Dynamical Boundary Conditions of Reactive Type , 2008 .

[16]  Joachim Escher,et al.  Quasilinear parabolic systems with dynamical boundary conditions , 1993 .

[17]  V. A. Dougalis,et al.  Finite Difference Schemes for the "Parabolic" Equation in a Variable Depth Environment with a Rigid Bottom Boundary Condition , 2001, SIAM J. Numer. Anal..

[18]  Ding Lee,et al.  IFD: An Implicit Finite-Difference Computer Model for Solving the Parabolic Equation , 1982 .

[19]  J. Westwater,et al.  The Mathematics of Diffusion. , 1957 .

[20]  Georgios E. Zouraris,et al.  Error Estimates for Finite Difference Methods for a Wide Angle Parabolic Equation , 1996 .

[21]  C. Bandle,et al.  Parabolic problems with dynamical boundary conditions: eigenvalue expansions and blow up , 2006 .

[22]  Björn Engquist,et al.  Parabolic wave equation approxi-mations in heterogeneous media , 1988 .

[23]  Michael B. Porter,et al.  The problem of energy conservation in one-way models , 1991 .