Multifocal Multi-Photon Microscopy

Multi-photon processes relying on the cooperative action of two or more photons can broadly be divided into two families that are distinguished by the fact that the photons are either absorbed or scattered (Shen, 1984). Whereas the scattering events relevant to microscopy are second and third harmonic generation (SHG, THG), as well as coherent anti-Stokes Raman scattering (CARS), the useful multi-photon absorption events are two- and threephoton excitation (2PE, 3PE).

[1]  M D Duncan,et al.  Scanning coherent anti-Stokes Raman microscope. , 1982, Optics letters.

[2]  K. Svoboda,et al.  Photon Upmanship: Why Multiphoton Imaging Is More than a Gimmick , 1997, Neuron.

[3]  S Kawata,et al.  Real‐time imaging of two‐photon‐induced fluorescence with a microlens‐array scanner and a regenerative amplifier , 1999, Journal of microscopy.

[4]  Satoshi Kawata,et al.  Second-harmonic-generation microscope with a microlens array scanner. , 2002, Optics letters.

[5]  Colin J. R. Sheppard,et al.  Second-harmonic imaging in the scanning optical microscope , 1978 .

[6]  R. Yuste,et al.  Attractor dynamics of network UP states in the neocortex , 2003, Nature.

[7]  Robert W. Hellwarth,et al.  Nonlinear optical microscopic examination of structure in polycrystalline ZnSe , 1974 .

[8]  R Gauderon,et al.  Three-dimensional second-harmonic generation imaging with femtosecond laser pulses. , 1998, Optics letters.

[9]  D. Shafer,et al.  Gaussian to flat-top intensity distributing lens (A) , 1982 .

[10]  R R Alfano,et al.  Second-harmonic tomography of tissues. , 1997, Optics letters.

[11]  P. So,et al.  Two‐photon excited lifetime imaging of autofluorescence in cells during UV A and NIR photostress , 1996, Journal of microscopy.

[12]  S. Hell,et al.  KDEL-cargo regulates interactions between proteins involved in COPI vesicle traffic: measurements in living cells using FRET. , 2001, Developmental cell.

[13]  Guy Cox,et al.  3-dimensional imaging of collagen using second harmonic generation. , 2003, Journal of structural biology.

[14]  W. Webb,et al.  Measuring Serotonin Distribution in Live Cells with Three-Photon Excitation , 1997, Science.

[15]  Buist,et al.  Real time two‐photon absorption microscopy using multi point excitation , 1998 .

[16]  K Bahlmann,et al.  Three-photon excitation in fluorescence microscopy. , 1996, Journal of biomedical optics.

[17]  Alexander Egner,et al.  4Pi-microscopy of the Golgi apparatus in live mammalian cells. , 2004, Journal of structural biology.

[18]  Alan Boyde,et al.  The tandem scanning reflected light microscope , 1968 .

[19]  Alexander Egner,et al.  Fast 100-nm resolution three-dimensional microscope reveals structural plasticity of mitochondria in live yeast , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[20]  T Nielsen,et al.  High efficiency beam splitter for multifocal multiphoton microscopy , 2001, Journal of microscopy.

[21]  Satoshi Kawata,et al.  Confocal multipoint multiphoton excitation microscope with microlens and pinhole arrays , 2000 .

[22]  W. Denk,et al.  Two-photon imaging to a depth of 1000 microm in living brains by use of a Ti:Al2O3 regenerative amplifier. , 2003, Optics letters.

[23]  V. Centonze,et al.  Multiphoton excitation provides optical sections from deeper within scattering specimens than confocal imaging. , 1998, Biophysical journal.

[24]  Yuji Ikegaya,et al.  Calcium imaging of cortical networks dynamics. , 2005, Cell calcium.

[25]  B. Tromberg,et al.  Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[26]  W. Denk,et al.  Two-photon laser scanning fluorescence microscopy. , 1990, Science.

[27]  S. Penman,et al.  A polymerase activity forming 5S and pre-4S RNA in isolated HeLa cell nuclei , 1974 .

[28]  J. Squier,et al.  Widefield multiphoton and temporally decorrelated multifocal multiphoton microscopy. , 2000, Optics express.

[29]  S W Hell,et al.  Comparison of the axial resolution of practical Nipkow‐disk confocal fluorescence microscopy with that of multifocal multiphoton microscopy: theory and experiment , 2002, Journal of microscopy.

[30]  C. Mackay,et al.  Photon counting strategies with low-light-level CCDs , 2003, astro-ph/0307305.

[31]  S W Hell,et al.  Space‐multiplexed multifocal nonlinear microscopy , 2001, Journal of microscopy.

[32]  Yaochun Shen Principles of nonlinear optics , 1984 .

[33]  Hell,et al.  Picosecond pulsed two‐photon imaging with repetition rates of 200 and 400 MHz , 1998 .

[34]  Gengfeng Zheng,et al.  Laser-scanning coherent anti-Stokes Raman scattering microscopy and applications to cell biology. , 2002, Biophysical journal.

[35]  S. Hell,et al.  Time multiplexing and parallelization in multifocal multiphoton microscopy , 2000, Journal of the Optical Society of America. A, Optics, image science, and vision.

[36]  Pekka Hänninen,et al.  Two‐photon excitation fluorescence microscopy using a semiconductor laser , 1995 .

[37]  Allister I. Ferguson,et al.  Application of a femtosecond self-sustaining mode-locked Ti:sapphire laser to the field of laser scanning confocal microscopy , 1992 .

[38]  W. R. Wiley,et al.  Three-Dimensional Vibrational Imaging by Coherent Anti-Stokes Raman Scattering , 1999 .

[39]  Juleon M. Schins,et al.  Imaging the Thermodynamic State of Lipid Membranes with Multiplex CARS Microscopy , 2002 .

[40]  Stefan W. Hell,et al.  Multifocal multiphoton microscopy: A fast and efficient tool for 3‐D fluorescence imaging , 1998 .

[41]  K J Halbhuber,et al.  Pulse-length dependence of cellular response to intense near-infrared laser pulses in multiphoton microscopes. , 1999, Optics letters.

[42]  T. Nielsen,et al.  Two-dimensional imaging without scanning by multifocal multiphoton microscopy. , 2005, Applied optics.

[43]  Yaron Silberberg,et al.  Third-harmonic microscopy with a titanium–sapphire laser , 2002 .

[44]  Yaron Silberberg,et al.  Nonlinear scanning laser microscopy by third harmonic generation , 1997 .

[45]  William A Mohler,et al.  Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues. , 2002, Biophysical journal.

[46]  S. Hell,et al.  Live cell imaging by multifocal multiphoton microscopy. , 2000, European journal of cell biology.

[47]  W. Webb,et al.  Nonlinear magic: multiphoton microscopy in the biosciences , 2003, Nature Biotechnology.

[48]  S. Hell,et al.  Fluorescence resonance energy transfer analysis of protein-protein interactions in single living cells by multifocal multiphoton microscopy. , 2002, Journal of biotechnology.

[49]  S W Hell,et al.  Heating by absorption in the focus of an objective lens. , 1998, Optics letters.

[50]  Wilson,et al.  3D microscopy of transparent objects using third‐harmonic generation , 1998, Journal of microscopy.

[51]  G. Patterson,et al.  Photobleaching in two-photon excitation microscopy. , 2000, Biophysical journal.

[52]  D N Fittinghoff,et al.  Time-decorrelated multifocal array for multiphoton microscopy and micromachining. , 2000, Optics letters.

[53]  Alan Boyde,et al.  Tandem-scanning reflected-light microscope. , 1985 .

[54]  E. Neher,et al.  Highly nonlinear photodamage in two-photon fluorescence microscopy. , 2001, Biophysical journal.

[55]  Stefan W. Hell,et al.  Fluorescence lifetime three-dimensional microscopy with picosecond precision using a multifocal multiphoton microscope , 1998 .