Combining anisotropic diffusion and alternating sequential filtering for satellite image enhancement and smoothing

Automatic information extraction requires a processing system to encapsulate the content of the image. This is a non-trivial task, because of the complexity of the information stored in images. In this paper satellite image enhancement and smoothing towards automatic feature extraction is accomplished through an effective serial application of anisotropic diffusion processing and alternating sequential filtering. Nonlinear diffusion processes can be found in many recent methods for image processing and computer vision. A robust anisotropic diffusion filtering is used with Tukey's biweight robust error norm for "edge-stopping" function, which preserves sharper boundaries than previous formulations and improves the automatic stopping of the diffusion. A well-known class of morphological filters, alternating sequential filtering is applied afterwards for a more extended enhancement and smoothing. The effective processing scheme is demonstrated with examples; Results appear promising.

[1]  Stanley R Sternberg,et al.  Grayscale morphology , 1986 .

[2]  Wenyuan Xu,et al.  Behavioral analysis of anisotropic diffusion in image processing , 1996, IEEE Trans. Image Process..

[3]  I. Destival,et al.  Mathematical morphology applied to remote sensing , 1986 .

[4]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[5]  Andrew P. Witkin,et al.  Scale-Space Filtering , 1983, IJCAI.

[6]  Guillermo Sapiro,et al.  Robust anisotropic diffusion , 1998, IEEE Trans. Image Process..

[7]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Max A. Viergever,et al.  Efficient and reliable schemes for nonlinear diffusion filtering , 1998, IEEE Trans. Image Process..

[9]  Joachim Weickert,et al.  A Review of Nonlinear Diffusion Filtering , 1997, Scale-Space.

[10]  Jagath Samarabandu,et al.  A flexible framework for developing a cooperative intelligent image analysis system , 2003, IS&T/SPIE Electronic Imaging.

[11]  G. Matheron Random Sets and Integral Geometry , 1976 .

[12]  A M Laval-Jeantet,et al.  New prospects in CT image processing via mathematical morphology. , 1985, European journal of radiology.

[13]  C. Harlow,et al.  Computational image interpretation models : an overview and a perspective , 1990 .

[14]  D Marr,et al.  Theory of edge detection , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[15]  Tony Lindeberg,et al.  Scale-Space Theory in Computer Vision , 1993, Lecture Notes in Computer Science.

[16]  Konstantinos Karantzalos,et al.  Towards automatic detection of coastlines from satellite imagery , 2002, 2002 14th International Conference on Digital Signal Processing Proceedings. DSP 2002 (Cat. No.02TH8628).

[17]  Gösta H. Granlund,et al.  The complexity of vision , 1999, Signal Process..

[18]  Eberhard Gülch,et al.  DIGITAL SYSTEMS FOR AUTOMATED CARTOGRAPHIC FEATURE EXTRACTION , 2000 .

[19]  L. Rudin,et al.  Feature-oriented image enhancement using shock filters , 1990 .

[20]  P. Lions,et al.  Image selective smoothing and edge detection by nonlinear diffusion. II , 1992 .

[21]  Konstantinos Karantzalos,et al.  Evaluation of selected edge detection techniques in remotely sensing images , 2003, SPIE Remote Sensing.

[22]  J. Goutsias,et al.  Optimal Morphological Pattern Restoration from Noisy Binary Images , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  S Grossberg,et al.  Neural dynamics of brightness perception: Features, boundaries, diffusion, and resonance , 1984, Perception & Psychophysics.

[24]  J. Koenderink The structure of images , 2004, Biological Cybernetics.