Synthesis of nanoporous spheres of cubic gallium oxynitride and their lithium ion intercalation properties

Cubic spinel structured gallium oxynitride has been synthesized through the reaction of metallic gallium and water in the presence of organic ethylenediamine. The relative content of the mixed solvent of water and ethylenediamine controls the product morphology and structure. A novel well-defined nanoporous structure has finally been obtained, whose large surface area and peculiar surface chemistry will generate novel physical and chemical properties. As an example, lithium intercalation properties for prospective applications in lithium ion batteries are demonstrated in this work.

[1]  Sung-Wook Kim,et al.  Solvothermal oxidation of gallium metal , 2009 .

[2]  A. Kuwabara,et al.  Structures and energetics of Ga2O3 polymorphs , 2007 .

[3]  K. Leinenweber,et al.  Spinel-Structured Gallium Oxynitride (Ga3O3N) Synthesis and Characterization: An Experimental and Theoretical Study , 2005 .

[4]  Richard Dronskowski,et al.  Formation of spinel-type gallium oxynitrides: a density-functional study of binary and ternary phases in the system Ga-O-N , 2005 .

[5]  M. Delgado,et al.  Infrared Spectroscopic Studies on the Surface Chemistry of High‐Surface‐Area Gallia Polymorphs , 2005 .

[6]  Weiming Hua,et al.  Dehydrogenation of propane to propene over different polymorphs of gallium oxide , 2005 .

[7]  F. Aldinger,et al.  Microstructural and thermodynamic study of γ-Ga2O3 , 2004, International Journal of Materials Research.

[8]  Yong Wang,et al.  Preparation of SnO2–graphite nanocomposite anodes by urea-mediated hydrolysis , 2003 .

[9]  M. Delgado,et al.  Unexpected similarities between the surface chemistry of cubic and hexagonal gallia polymorphs , 2003 .

[10]  F. Lange,et al.  Microstructural evolution of precursor-derived gallium nitride thin films , 2002 .

[11]  J. Ying,et al.  THE SELECTIVE CATALYTIC REDUCTION OF NITRIC OXIDE WITH METHANE OVER NONZEOLITIC CATALYSTS , 2001 .

[12]  M. Delgado,et al.  Preparation and characterization of mesoporous γ-Ga2O3 , 2000 .

[13]  C. Kuo,et al.  An investigation into the early stages of oxide growth on gallium nitride , 2000 .

[14]  Young Hee Lee,et al.  Catalytic Growth of β-Ga2O3 Nanowires by Arc Discharge. , 2000 .

[15]  R. Franchy,et al.  Combined EELS/STM study of the adsorption of nitric oxide and the formation of GaOxNy on CoGa(001) , 1999 .

[16]  G. Hodes,et al.  Sonochemical Hydrolysis of Ga3+ Ions: Synthesis of Scroll-like Cylindrical Nanoparticles of Gallium Oxide Hydroxide , 1999 .

[17]  Didier Gourier,et al.  ORIGIN OF THE BLUE LUMINESCENCE OF β-Ga2O3 , 1998 .

[18]  J. Dahn,et al.  Electrochemical and In Situ X‐Ray Diffraction Studies of the Reaction of Lithium with Tin Oxide Composites , 1997 .

[19]  R. Mohler,et al.  Influence of structural order on the luminescence of oxide spinels: Manganese activated spinels , 1994 .

[20]  Takashi Mukai,et al.  High-Power GaN P-N Junction Blue-Light-Emitting Diodes , 1991 .

[21]  P. Couturier Japan , 1988, The Lancet.

[22]  J. Mccauley,et al.  Phase Relations and Reaction Sintering of Transparent Cubic Aluminum Oxynitride Spinel (ALON) , 1979 .

[23]  N. W. Grimes,et al.  X-ray diffraction studies of the spinel series Mg(CrxAl2-x)O4 I. Lattice parameters and structure , 1970 .

[24]  K. Pohl Hydrothermale Bildung von γ-Ga2O3 , 1968, Naturwissenschaften.

[25]  H. H. Tippins Optical Absorption and Photoconductivity in the Band Edge of β − Ga 2 O 3 , 1965 .

[26]  Rustum Roy,et al.  Polymorphism of Ga2O3 and the System Ga2O3—H2O , 1952 .

[27]  Y. Bando,et al.  Structure and nitrogen incorporation of carbon nanotubes synthesized by catalytic pyrolysis of dimethylformamide , 2004 .

[28]  J W Orton,et al.  Group III nitride semiconductors for short wavelength light-emitting devices , 1998 .