Some Characterizations of the Choquet Integral with Respect to a Monotone Interval-Valued Set Function

Intervals can be used in the representation of uncertainty. In this regard, we consider monotone interval-valued set functions and the Choquet integral. This paper investigates characterizations of monotone interval-valued set functions and provides applications of the Choquet integral with respect to monotone interval-valued set functions, on the space of measurable functions with the Hausdorff metric.

[1]  Lee-Chae Jang,et al.  On Properties of the Choquet Integral of Interval-Valued Functions , 2011, J. Appl. Math..

[2]  M. Sugeno,et al.  A theory of fuzzy measures: Representations, the Choquet integral, and null sets , 1991 .

[3]  Myung-Geun Chun,et al.  Hybrid Feature Selection Using Genetic Algorithm and Information Theory , 2013, Int. J. Fuzzy Log. Intell. Syst..

[4]  G. Choquet Theory of capacities , 1954 .

[5]  Serafín Moral,et al.  Decision making problems in a general environment , 1988 .

[6]  Zhaohan Sheng,et al.  The fuzzy set-valued measures generated by fuzzy random variables , 1998, Fuzzy Sets Syst..

[7]  Hung T. Nguyen,et al.  Choquet weak convergence of capacity functionals of random sets , 2007, Inf. Sci..

[8]  L. Jang A NOTE ON THE MONOTONE INTERVAL-VALUED SET FUNCTION DEFINED BY THE INTERVAL-VALUED CHOQUET INTEGRAL , 2007 .

[9]  L. C. Jang,et al.  Some properties of Choquet integrals of set-valued functions , 1997, Fuzzy Sets Syst..

[10]  Michio Sugeno,et al.  Autocontinuity, convergence in measure, and convergence in distribution , 1997, Fuzzy Sets Syst..

[11]  Inés Couso,et al.  Stochastic convergence, uniform integrability and convergence in mean on fuzzy measure spaces , 2002, Fuzzy Sets Syst..

[12]  Alina Cristiana Gavriluţ,et al.  A Lusin type theorem for regular monotone uniformly autocontinuous set multifunctions , 2010, Fuzzy Sets Syst..

[13]  Lee-Chae Jang A note on convergence properties of interval-valued capacity functionals and Choquet integrals , 2012, Inf. Sci..

[14]  Zhenyuan Wang,et al.  CONVERGENCE THEOREMS FOR SEQUENCES OF CHOQUET INTEGRALS , 1997 .

[15]  H. Schjaer-Jacobsen,et al.  Representation and calculation of economic uncertainties: Intervals, fuzzy numbers, and probabilities , 2002 .

[16]  L. C. Jang,et al.  On the representation of Choquet integrals of set-valued functions, and null sets , 2000, Fuzzy Sets Syst..

[17]  Luis M. de Campos,et al.  Characterization and comparison of Sugeno and Choquet integrals , 1992 .

[18]  Kurt Weichselberger The theory of interval-probability as a unifying concept for uncertainty , 2000, Int. J. Approx. Reason..

[19]  R. Aumann INTEGRALS OF SET-VALUED FUNCTIONS , 1965 .

[20]  Manuel J. Bolaños Carmona,et al.  Convergence properties of the monotone expectation and its application to the extension of fuzzy measures , 1989 .

[21]  F. Hiai,et al.  Integrals, conditional expectations, and martingales of multivalued functions , 1977 .

[22]  José M. Merigó,et al.  Decision-making with distance measures and induced aggregation operators , 2011, Comput. Ind. Eng..

[23]  Witold Pedrycz,et al.  On the fundamental convergence in the (C) mean in problems of information fusion , 2009 .

[24]  Dayou Liu,et al.  Set-valued Choquet integrals revisited , 2004, Fuzzy Sets Syst..

[25]  Da Ruan,et al.  Choquet integral based aggregation approach to software development risk assessment , 2010, Inf. Sci..

[26]  Lee-Chae Jang INTERVAL-VALUED CHOQUET INTEGRALS AND THEIR APPLICATIONS , 2004 .