Electronics Below 10 nm

Publisher Summary The aim of this chapter is to review the prospects for the development and practical introduction of ultra small electron devices, including nanoscale field-effect transistors (FETs) and single-electron transistors (SETs), as well as new concepts for nanometer-scalable memory cells. Lithographically defined SETs can hardly be a panacea, since the critical dimension of such transistor for the room temperature operation should be below 1 nm. Due to the finite yield of molecular devices and their sensitivity to randomly charged impurities, this approach requires a substantial revision of integrated circuit architectures, ranging from defect-tolerant versions of memory matrices and number crunching processors to more radical solutions like hardware-implemented neuromorphic networks capable of advanced image recognition and more intelligent information processing tasks.

[1]  Yuan Taur,et al.  Device scaling limits of Si MOSFETs and their application dependencies , 2001, Proc. IEEE.

[2]  T. J. Walls,et al.  Nanoscale silicon MOSFETs: A theoretical study , 2003 .

[3]  J. F. Stoddart,et al.  A [2]Catenane-Based Solid State Electronically Reconfigurable Switch , 2000 .

[4]  Klaus Kern,et al.  Room Temperature Single Electron Transistor by Local Chemical Modification of Carbon Nanotubes , 2002 .

[5]  Kazumasa Nomoto,et al.  Novel logic device using coupled quantum dots , 1993 .

[6]  Konstantin K. Likharev,et al.  Coulomb blockade of single-electron tunneling, and coherent oscillations in small tunnel junctions , 1986 .

[7]  Federico Capasso,et al.  Physics of Quantum Electron Devices , 1990 .

[8]  V. V. Shorokhov,et al.  Simulation of characteristics of a molecular single-electron tunneling transistor with a discrete energy spectrum of the central electrode , 2002 .

[9]  Kazuhiko Matsumoto,et al.  Room temperature operation of a single electron transistor made by the scanning tunneling microscope nanooxidation process for the TiOx/Ti system , 1996 .

[10]  Hongkun Park,et al.  Kondo resonance in a single-molecule transistor , 2002, Nature.

[11]  John K. Tomfohr,et al.  Reproducible Measurement of Single-Molecule Conductivity , 2001, Science.

[12]  Kris Kempa,et al.  Spontaneous polarization of electrons in quantum dashes , 1991 .

[13]  Yoshihito Amemiya,et al.  Cellular-Automaton Circuits Using Single-Electron-Tunneling Junctions , 1997 .

[14]  K. Likharev,et al.  Dynamics of Josephson Junctions and Circuits , 1986 .

[15]  C. Dekker,et al.  Direct measurement of electrical transport through DNA molecules , 2000, Nature.

[16]  Wolfgang Porod,et al.  Toward nanoelectronic cellular neural networks , 2000 .

[17]  K. K. Young Analysis of conduction in fully depleted SOI MOSFETs , 1989 .

[18]  H. Grubin The physics of semiconductor devices , 1979, IEEE Journal of Quantum Electronics.

[19]  D. V. Averin,et al.  Shot noise in diffusive conductors: A quantitative analysis of electron-phonon interaction effects , 1998 .

[20]  P. D. Tougaw,et al.  Dynamic behavior of quantum cellular automata , 1996 .

[21]  Godfrey Gumbs,et al.  Long-range electron transfer and electronic transport through macromolecules , 2002 .

[22]  Yasuo Takahashi,et al.  Fabrication technique for Si single-electron transistor operating at room temperature , 1995 .

[23]  Kazuo Nakazato,et al.  A memory cell with single-electron and metal-oxide-semiconductor transistor integration , 1999 .

[24]  Saied N. Tehrani,et al.  Recent developments in magnetic tunnel junction MRAM , 2000 .

[25]  Hongjie Dai,et al.  Electrical measurements of individual semiconducting single-walled carbon nanotubes of various diameters , 2000 .

[26]  M.H. Hassoun,et al.  Fundamentals of Artificial Neural Networks , 1996, Proceedings of the IEEE.

[27]  J. Sturm,et al.  25-nm p-channel vertical MOSFETs with SiGeC source-drains , 1999, IEEE Electron Device Letters.

[28]  David J. Gosztola,et al.  Excited Doublet States of Electrochemically Generated Aromatic Imide and Diimide Radical Anions , 2000 .

[29]  Yoshihito Amemiya,et al.  Boltzmann machine neuron circuit using single-electron tunneling , 1997 .

[30]  Nagaev Ke,et al.  Influence of electron-electron scattering on shot noise in diffusive contacts. , 1995 .

[31]  Sandip Tiwari,et al.  A silicon nanocrystals based memory , 1996 .

[32]  D. Muller,et al.  The electronic structure at the atomic scale of ultrathin gate oxides , 1999, Nature.

[33]  O. Turel,et al.  Possible nanoelectronic implementation of neuromorphic networks , 2003, Proceedings of the International Joint Conference on Neural Networks, 2003..

[34]  Arkady V. Krasheninnikov,et al.  Elementary quantum-dot gates for single-electron computing , 1996 .

[35]  G. Iannaccone,et al.  Thermal behavior of quantum cellular automaton wires , 2000 .

[36]  J. Colinge Silicon-on-Insulator Technology , 1991 .

[37]  A. Messiah Quantum Mechanics , 1961 .

[38]  V. V. Kislov,et al.  Molecular clusters as building blocks for nanoelectronics: the first demonstration of a cluster single-electron tunnelling transistor at room temperature , 2002 .

[39]  K. K. Likharev,et al.  Electron‐electron interaction in linear arrays of small tunnel junctions , 1995 .

[40]  Konstantin K. Likharev,et al.  Riding the crest of a new wave in memory [NOVORAM] , 2000 .

[41]  G. Tóth,et al.  Experimental demonstration of a latch in clocked quantum-dot cellular automata , 2001 .

[42]  Yoshihito Amemiya,et al.  Single-electron logic device based on the binary decision diagram , 1997 .

[43]  Kwangseok Han,et al.  Characteristics of p-channel Si nano-crystal memory , 2000 .

[44]  T. Ohshima,et al.  Operation of bistable phase‐locked single‐electron tunneling logic elements , 1996 .

[45]  C. Lent,et al.  Power gain and dissipation in quantum-dot cellular automata , 2002 .

[46]  Jens Kortus,et al.  Electronic structure of (formula presented)X-ray emission and absorption studies , 2002 .

[47]  Özgür Türel,et al.  CrossNets: possible neuromorphic networks based on nanoscale components , 2003, Int. J. Circuit Theory Appl..

[48]  Haroon Ahmed,et al.  Silicon single electron memory cell , 1998 .

[49]  Robert F. Pierret,et al.  Semiconductor device fundamentals , 1996 .

[50]  Ali Zilouchian,et al.  FUNDAMENTALS OF NEURAL NETWORKS , 2001 .

[51]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[52]  Vwani P. Roychowdhury,et al.  Computational Paradigms in Nanoelectronics: Quantum Coupled Single Electron Logic and Neuromorphic Networks , 1996 .

[53]  Hideki Matsumura,et al.  A metal/insulator tunnel transistor with 16 nm channel length , 1999 .

[54]  A. A. Odintsov,et al.  Macroscopic quantum tunneling of the electric charge in small tunnel junctions , 1989 .

[55]  Chenming Hu,et al.  Two silicon nitride technologies for post-SiO2 MOSFET gate dielectric , 2001, IEEE Electron Device Letters.

[56]  H. Koch,et al.  Single-Electron Tunneling and Mesoscopic Devices , 1992 .

[57]  Qiao-Qun Yu Single-Electron Devices , .

[58]  Yasuo Takahashi,et al.  Fabrication method for IC-oriented Si single-electron transistors , 2000 .

[59]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[60]  Kazuo Nakazato,et al.  Enhancement of Coulomb blockade in semiconductor tunnel junctions , 1995 .

[61]  R. A. Smith,et al.  A silicon Coulomb blockade device with voltage gain , 1997 .

[62]  Yasuo Wada,et al.  Prospects for Single‐Molecule Information‐Processing Devices for the Next Paradigm , 2002, Annals of the New York Academy of Sciences.

[63]  C. Dekker,et al.  Backbone-induced semiconducting behavior in short DNA wires , 2002, cond-mat/0205367.

[64]  Chen,et al.  Large On-Off Ratios and Negative Differential Resistance in a Molecular Electronic Device. , 1999, Science.

[65]  M. Devoret,et al.  Direct observation of macroscopic charge quantization , 1991 .

[66]  E. M. Lifshitz,et al.  Quantum mechanics: Non-relativistic theory, , 1959 .

[67]  K. K. Likharev,et al.  Single-electron traps: A quantitative comparison of theory and experiment , 1997 .

[68]  T. D. Dunbar,et al.  Evolution of Strategies for Self‐Assembly and Hookup of Molecule‐Based Devices , 1998 .

[69]  P. Scott Carney,et al.  Silicon field-effect transistor based on quantum tunneling , 1994 .

[70]  Konstantin K. Likharev,et al.  Single-electron devices and their applications , 1999, Proc. IEEE.

[71]  Solid-State Electronics , 1955, Nature.

[72]  M. Anantram,et al.  Two-dimensional quantum mechanical modeling of nanotransistors , 2001, cond-mat/0111290.

[73]  P. Douglas Tougaw,et al.  Regular arrays of quantum-dot cellular automata “macrocells” , 2000 .

[74]  Y. Lee,et al.  Room temperature operation of a quantum-dot flash memory , 1997, IEEE Electron Device Letters.

[75]  John Lambe,et al.  Charge-Quantization Studies Using a Tunnel Capacitor , 1969 .

[76]  Y. Tsividis Operation and modeling of the MOS transistor , 1987 .

[77]  Zahid A. K. Durrani,et al.  A high-speed silicon-based few-electron memory with metal– oxide–semiconductor field-effect transistor gain element , 2000 .

[78]  Tobias J. Hagge,et al.  Physics , 1929, Nature.

[79]  P. Dobson Physics of Semiconductor Devices (2nd edn) , 1982 .

[80]  K. Natori Ballistic metal-oxide-semiconductor field effect transistor , 1994 .

[81]  Toshitsugu Sakamoto,et al.  Transistor characteristics of 14-nm-gate-length EJ-MOSFETs , 2000 .

[82]  T. Sugii,et al.  Ultrafast operation of V/sub th/-adjusted p/sup +/-n/sup +/ double-gate SOI MOSFET's , 1994, IEEE Electron Device Letters.

[83]  Ken K. Chin,et al.  Dual-material gate (DMG) field effect transistor , 1999 .

[84]  Kazumasa Nomoto,et al.  Single electron–photon logic device using coupled quantum dots: Computation with the Fock ground state , 1996 .

[85]  Masumi Saitoh,et al.  Large Electron Addition Energy above 250 meV in a Silicon Quantum Dot in a Single-Electron Transistor , 2001 .

[86]  Yasuo Takahashi,et al.  Si complementary single-electron inverter with voltage gain , 2000 .

[87]  Jonas I. Goldsmith,et al.  Coulomb blockade and the Kondo effect in single-atom transistors , 2002, Nature.

[88]  David J. Schiffrin,et al.  A nanometre-scale electronic switch consisting of a metal cluster and redox-addressable groups , 2000, Nature.

[89]  S. Tans,et al.  Room-temperature transistor based on a single carbon nanotube , 1998, Nature.

[90]  Wei Zheng,et al.  Observation of strong Coulomb blockade in resistively isolated tunnel junctions , 1998 .

[91]  Sandip Tiwari,et al.  Fast and long retention-time nano-crystal memory , 1996 .

[92]  Kazuhiko Matsumoto,et al.  Room-temperature single-electron memory made by pulse-mode atomic force microscopy nano oxidation process on atomically flat α-alumina substrate , 2000 .

[93]  A R Cook,et al.  Rapid Electron Tunneling Through Oligophenylenevinylene Bridges , 2001, Science.

[94]  T. J. Walls,et al.  MOSFETs below 10 nm: quantum theory , 2003 .

[95]  P.C.H. Chan,et al.  Fabrication of gate-all-around transistors using metal induced lateral crystallization , 2001, IEEE Electron Device Letters.

[96]  Byung-Gook Park,et al.  Room Temperature Coulomb Oscillation of a Single Electron Switch with an Electrically Formed Quantum Dot and Its Modeling , 2000 .

[97]  Alexander N. Korotkov,et al.  Charge sensitivity of radio frequency single-electron transistor , 1999, cond-mat/9902206.

[98]  C. Kergueris,et al.  Electron transport through a metal-molecule-metal junction , 1999, cond-mat/9904037.

[99]  F. Balestra,et al.  Double-gate silicon-on-insulator transistor with volume inversion: A new device with greatly enhanced performance , 1987, IEEE Electron Device Letters.

[100]  K. Likharev,et al.  Nanoscale field-effect transistors: An ultimate size analysis , 1997, cond-mat/9706026.

[101]  A. N. Korotkov,et al.  SINGLE-ELECTRON-PARAMETRON-BASED LOGIC DEVICES , 1998 .

[102]  C. Yang,et al.  Two-dimensional numerical simulation of Schottky barrier MOSFET with channel length to 10 nm , 1998 .

[103]  M. Reed,et al.  Conductance of a Molecular Junction , 1997 .

[104]  Supriyo Datta,et al.  The silicon MOSFET from a transmission viewpoint , 1998 .

[105]  J. A. del Alamo,et al.  Scheme for the fabrication of ultrashort channel metal-oxide-semiconductor field-effect transistors , 2000 .

[106]  Korotkov Intrinsic noise of the single-electron transistor. , 1994, Physical review. B, Condensed matter.

[107]  W. Roush EUV edging out rivals as next-generation IC fab tool , 2001 .

[108]  Kazuo Yano,et al.  Single-electron memory for giga-to-tera bit storage , 1999, Proc. IEEE.

[109]  David W. Lynch,et al.  Fe−3s core-level splitting and local magnetism in Fe2VAl , 2001 .

[110]  Tao,et al.  Probing potential-tuned resonant tunneling through redox molecules with scanning tunneling microscopy. , 1996, Physical review letters.

[111]  Jack C. Lee,et al.  Ultrathin zirconium silicate film with good thermal stability for alternative gate dielectric application , 2000 .

[112]  C. M. Sotomayor Torres,et al.  Nanoimprint lithography: challenges and prospects , 2001 .

[113]  ScienceDirect Superlattices and microstructures , 1985 .

[114]  Giuseppe Iannaccone,et al.  Performance assessment of adiabatic quantum cellular automata , 2001 .

[115]  Y. Tosaka,et al.  Scaling theory for double-gate SOI MOSFET's , 1993 .

[116]  Konstantin K. Likharev,et al.  Single-Electron Parametron: Reversible Computation in a Discrete-State System , 1996, Science.

[117]  Kenji Taniguchi,et al.  A Single Electron Neuron Device , 1997 .

[118]  K. Likharev,et al.  RSFQ TECHNOLOGY: PHYSICS AND DEVICES , 2001 .

[119]  Michel Devoret,et al.  Single Charge Tunneling , 1992 .

[120]  T. M. Klapwijk,et al.  SINGLE-ELECTRON TUNNELING AND MESOSCOPIC DEVICES , 1993 .

[121]  Magnus Willander,et al.  Modelling and design of quantum dot cellular automata , 1998 .

[122]  Hiroshi Mizuta,et al.  Effects of disorder on the blockade voltage of two-dimensional quantum dot arrays , 1998 .

[123]  Robert M. Wallace,et al.  Evaluating the minimum thickness of gate oxide on silicon using first-principles method , 1998 .

[124]  L. Nagahara,et al.  A conducting polymer nanojunction switch. , 2001, Journal of the American Chemical Society.

[125]  P. D. Tougaw,et al.  Logical devices implemented using quantum cellular automata , 1994 .

[126]  K. Likharev Correlated discrete transfer of single electrons in ultrasmall tunnel junctions , 1988 .

[127]  J. E. Carroll,et al.  Gallium Arsenide and Related Compounds , 1977 .

[128]  K. Likharev,et al.  Effective boundary conditions for carriers in ultrathin SOI channels , 2003 .

[129]  K. F. Chen,et al.  Observation of B+-ppK+ , 2002 .

[130]  Fulton,et al.  Determination of Coulomb-blockade resistances and observation of the tunneling of single electrons in small-tunnel-junction circuits. , 1991, Physical review letters.

[131]  Marcel Mayor,et al.  Electronic transport through single conjugated molecules , 2002 .

[132]  Mark E. Twigg,et al.  Epitaxial Si-based tunnel diodes , 2000 .

[133]  Alexander B. Zorin,et al.  A very low-noise single-electron electrometer of stacked-junction geometry , 2000 .

[134]  Konstantin K. Likharev,et al.  Possible performance of capacitively coupled single‐electron transistors in digital circuits , 1995 .

[135]  D. Frank,et al.  Generalized scale length for two-dimensional effects in MOSFETs , 1998, IEEE Electron Device Letters.

[136]  Alexander N. Korotkov,et al.  Correlated single-electron tunneling via mesoscopic metal particles: Effects of the energy quantization , 1990 .

[137]  Han,et al.  Measurement of single electron lifetimes in a multijunction trap. , 1994, Physical review letters.

[138]  Vicky Philipsen,et al.  Sputtering of Ag atoms into metastable excited states , 2002 .

[139]  Vwani P. Roychowdhury,et al.  Metastable states and information propagation in a one-dimensional array of locally coupled bistable cells , 1999 .

[140]  M. Lundstrom On the mobility versus drain current relation for a nanoscale MOSFET , 2001, IEEE Electron Device Letters.

[141]  Paul L. McEuen,et al.  Nanomechanical oscillations in a single-C60 transistor , 2000, Nature.

[142]  D. Signorini,et al.  Neural networks , 1995, The Lancet.

[143]  David J. Frank,et al.  Power-constrained CMOS scaling limits , 2002, IBM J. Res. Dev..

[144]  S. I. Serdyukova,et al.  Single-electron tunnel junction array: an electrostatic analog of the Josephson transmission line , 1989 .

[145]  Stoddart,et al.  Electronically configurable molecular-based logic gates , 1999, Science.

[146]  Michael Tinkham,et al.  Introduction to mesoscopic physics , 1997 .

[147]  Wolfgang Porod,et al.  Quantum cellular automata , 1994 .

[148]  C. Hu,et al.  Sub-50 nm P-channel FinFET , 2001 .

[149]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[150]  Ya-Chin King,et al.  A long-refresh dynamic/quasi-nonvolatile memory device with 2-nm tunneling oxide , 1999 .

[151]  M. Reed Molecular-scale electronics , 1999, Proc. IEEE.

[152]  Jason D. Monnell,et al.  Conductance Switching in Single Molecules Through Conformational Changes , 2001, Science.

[153]  M. Lundstrom,et al.  Essential physics of carrier transport in nanoscale MOSFETs , 2002 .

[154]  D. Averin,et al.  Theory of single-electron charging of quantum wells and dots. , 1991, Physical review. B, Condensed matter.

[155]  R J Schoelkopf,et al.  Radio-frequency single-electron transistor as readout device for qubits: charge sensitivity and backaction. , 2001, Physical review letters.

[156]  Harald Gossner,et al.  Silicon nanoelectronic devices with delta-doped layers , 1995 .

[157]  Karl Hess,et al.  Single‐electron Coulomb exclusion on the atomic level , 1994 .

[158]  T. Ohno,et al.  Fully depleted 20-nm SOI CMOSFETs with W-clad gate/source/drain layers , 2001 .

[159]  Ken Uchida,et al.  Influence of Channel Depletion on the Carrier Charging Characteristics in Si Nanocrystal Floating Gate Memory , 2000 .

[160]  A. Korotkov Analysis of integrated single-electron memory operation , 2002, cond-mat/0206016.

[162]  William D. Brown,et al.  Nonvolatile Semiconductor Memory Technology , 1997 .

[163]  Yong Liu,et al.  Graded gate VDMOSFET , 2000 .

[164]  J. A. López-Villanueva,et al.  Effects of the inversion-layer centroid on the performance of double-gate MOSFETs , 2000 .

[165]  James M. Tour,et al.  Molecular Scale Electronics: A Synthetic/Computational Approach to Digital Computing , 1998 .

[166]  Zahid A. K. Durrani,et al.  Single-electron parametron memory cell , 2002 .

[167]  S. A. Yakovenko,et al.  Single-electron transistor based on a single cluster molecule at room temperature , 1996 .

[168]  Dolan,et al.  Observation of single-electron charging effects in small tunnel junctions. , 1987, Physical review letters.

[169]  Markus Weiss,et al.  Coulomb Blockade Thermometry in the Milli-Kelvin Temperature Range in High Magnetic Fields , 2002 .

[170]  G. Tóth,et al.  Power gain in a quantum-dot cellular automata latch , 2002 .

[171]  Paul L. McEuen,et al.  High Performance Electrolyte Gated Carbon Nanotube Transistors , 2002 .

[172]  J. Scott,et al.  Ferroelectric memories , 1997, Science.

[173]  Jong-Ho Lee,et al.  Room temperature single electron effects in a Si nano-crystal memory , 1999 .

[174]  Supriyo Bandyopadhyay,et al.  Supercomputing with spin-polarized single electrons in a quantum coupled architecture , 1994 .

[175]  Toshitsugu Sakamoto,et al.  Observation of source-to-drain direct tunneling current in 8 nm gate electrically variable shallow junction metal–oxide–semiconductor field-effect transistors , 2000 .

[176]  Richard A. Kiehl,et al.  Ternary single electron tunneling phase logic element , 1999 .

[177]  S. Laux,et al.  Understanding hot‐electron transport in silicon devices: Is there a shortcut? , 1995 .

[178]  H. Ahmed,et al.  Coulomb blockade memory using integrated single-electron transistor/metal-oxide-semiconductor transistor gain cells , 2000 .

[179]  G. Iannaccone,et al.  Modeling and manufacturability assessment of bistable quantum-dot cells , 1998, cond-mat/9804228.

[180]  J. Martinis,et al.  Voltage gain in the single‐electron transistor , 1992 .

[181]  Lang,et al.  First-principles calculation of transport properties of a molecular device , 2000, Physical review letters.

[182]  Yasunobu Nakamura,et al.  Room-temperature Al single-electron transistor made by electron-beam lithography , 2000 .

[183]  Daniel M. Kaplan,et al.  Coulomb gap, Coulomb blockade, and dynamic activation energy in frustrated single-electron arrays , 2003 .

[184]  P. D. Tougaw,et al.  A device architecture for computing with quantum dots , 1997, Proc. IEEE.

[185]  Toshio Ohshima Stability of binary logic tunneling phase states in dc‐biased and ac‐pumped single‐electron tunnel junctions , 1996 .

[186]  S. Takagi,et al.  On the universality of inversion layer mobility in Si MOSFET's: Part I-effects of substrate impurity concentration , 1994 .

[187]  Wei Zheng,et al.  Fabrication and characterization of single‐electron transistors and traps , 1994 .

[188]  Fumio Horiguchi,et al.  Impact of surrounding gate transistor (SGT) for ultra-high-density LSI's , 1991 .

[189]  T. J. Walls,et al.  Fully-quantum theory of SOI MOSFETs , 2003 .

[190]  Hiroshi Hiroshima,et al.  Single electron memory characteristic of silicon nanodot nanowire transistor , 2000 .

[191]  Andreas G. Andreou,et al.  Analog integrated circuits and signal processing , 1996 .

[192]  Thomas A. Moore,et al.  STM Contrast, Electron-Transfer Chemistry, and Conduction in Molecules , 1997 .

[193]  Victor I. Klimov,et al.  Nonlinear‐transmission spectra of porous silicon: Manifestation of size quantization , 1994 .

[194]  Konstantin K. Likharev,et al.  Shot Noise at Hopping: A Numerical Study , 2003 .

[195]  Mark S. Lundstrom Elementary scattering theory of the Si MOSFET , 1997, IEEE Electron Device Letters.

[196]  M. Reed,et al.  Electronic transport of molecular systems , 2002 .

[197]  Delsing,et al.  Time-correlated single-electron tunneling in one-dimensional arrays of ultrasmall tunnel junctions. , 1989, Physical review letters.

[198]  Katta G. Murty,et al.  On KΔ , 1986, Discret. Appl. Math..

[199]  John R. Tucker,et al.  Complementary digital logic based on the ``Coulomb blockade'' , 1992 .

[200]  S.K. Iyer,et al.  Electrically programmable fuse (eFUSE) using electromigration in silicides , 2002, IEEE Electron Device Letters.

[201]  A. N. Korotkov Theoretical analysis of the resistively coupled single-electron transistor , 1998 .

[202]  L. L. Chang,et al.  Resonant Tunneling in Semiconductors , 1991 .

[203]  Ieee Circuits,et al.  Digest of technical papers , 1984 .

[204]  Mark S. Lundstrom,et al.  On the performance limits for Si MOSFETs: a theoretical study , 2000 .

[205]  Chris J. M. Verhoeven,et al.  Considerations about Nanoelectronic GSI Processors , 2000 .

[206]  A. Korotkov Wireless single‐electron logic biased by alternating electric field , 1995 .

[207]  Gregory S. Snider,et al.  A Defect-Tolerant Computer Architecture: Opportunities for Nanotechnology , 1998 .

[208]  Alexander N. Korotkov,et al.  One dimensional arrays and solitary tunnel junctions in the weak coulomb blockade regime: CBT thermometry , 1997 .

[209]  Konstantin K. Likharev,et al.  Layered tunnel barriers for nonvolatile memory devices , 1998 .

[210]  Toshiro Hiramoto,et al.  Effects of traps on charge storage characteristics in metal-oxide-semiconductor memory structures based on silicon nanocrystals , 1998 .

[211]  E. G. Jones Cerebral Cortex , 1987, Cerebral Cortex.

[212]  K. E. Nagaev,et al.  On the shot noise in dirty metal contacts , 1992 .

[213]  Terrence J. Sejnowski,et al.  The Computational Brain , 1996, Artif. Intell..

[214]  L. A. Openov,et al.  Single-electron computing without dissipation , 1997 .

[215]  K. Likharev Single-electron transistors: Electrostatic analogs of the DC SQUIDS , 1987 .

[216]  Lars Samuelson,et al.  Gold nanoparticle single-electron transistor with carbon nanotube leads , 2001 .

[217]  Masaaki Shimizu,et al.  Dual-probe scanning tunneling microscope: Measuring a carbon nanotube ring transistor , 2001 .

[218]  R. A. Webb,et al.  Mesoscopic phenomena in solids , 1991 .

[219]  Y. Naveh,et al.  Modeling of 10-nm-scale ballistic MOSFET's , 2000, IEEE Electron Device Letters.

[220]  Konstantin K. Likharev,et al.  MULTIPLE-JUNCTION SINGLE-ELECTRON TRANSISTORS FOR DIGITAL APPLICATIONS , 1998 .

[221]  R. Schoelkopf,et al.  The radio-frequency single-electron transistor (RF-SET): A fast and ultrasensitive electrometer , 1998, Science.

[222]  Giuseppe Iannaccone,et al.  Simulation of time evolution of clocked and nonclocked quantum cellular automaton circuits , 2002 .

[223]  Jaw-Shen Tsai,et al.  Aluminum single-electron nonvolatile floating gate memory cell , 1997 .

[224]  T. Sakamoto,et al.  Characteristic length of hot-electron transport in silicon metal–oxide–semiconductor field-effect transistors , 2000 .

[225]  N. D. Lang,et al.  Measurement of the conductance of a hydrogen molecule , 2002, Nature.

[226]  C. Hu,et al.  FinFET-a self-aligned double-gate MOSFET scalable to 20 nm , 2000 .

[227]  P. D. Tougaw,et al.  Hierarchical design of quantum-dot cellular automata devices , 1999 .

[228]  David B. Janes,et al.  Electrostatic investigation into the bonding of poly(phenylene) thiols to gold , 2002 .

[229]  Kiyoo Itoh,et al.  Silicon stacked tunnel transistor for highspeed and high-density random access memory gain cells , 1999 .

[230]  Andrew G. Glen,et al.  APPL , 2001 .

[231]  Peter M. Kogge,et al.  Problems in designing with QCAs: Layout = Timing , 2001 .

[232]  G. Iannaccone,et al.  Operation of Quantum cellular automaton cells with more than two electrons , 1999 .

[233]  Richard A. Kiehl,et al.  Bistable locking of single‐electron tunneling elements for digital circuitry , 1995 .

[234]  Jean-Raymond Abrial,et al.  On B , 1998, B.

[235]  P.T. Lai,et al.  Improved performance and reliability of N2O-grown oxynitride on 6H-SiC , 2000, IEEE Electron Device Letters.

[236]  Anders Krogh,et al.  Introduction to the theory of neural computation , 1994, The advanced book program.

[237]  West,et al.  Scanning Single-Electron Transistor Microscopy: Imaging Individual Charges , 1997, Science.

[238]  P. D. Tougaw,et al.  AN ALTERNATIVE GEOMETRY FOR QUANTUM-DOT CELLULAR AUTOMATA , 1999 .

[239]  D. Hisamoto,et al.  Impact of the vertical SOI 'DELTA' structure on planar device technology , 1991 .

[240]  Prof. Dr. Dr. Valentino Braitenberg,et al.  Cortex: Statistics and Geometry of Neuronal Connectivity , 1998, Springer Berlin Heidelberg.

[241]  Stephen Y. Chou,et al.  A Silicon Single-Electron Transistor Memory Operating at Room Temperature , 1997, Science.

[242]  S. Dimitrijev Understanding semiconductor devices , 2000 .

[243]  Massimo Macucci,et al.  Critical assessment of the QCA architecture as a viable alternative to large scale integration , 2004 .

[244]  Z. Ren,et al.  A numerical study of ballistic transport in a nanoscale MOSFET , 2002 .

[245]  C. Dekker,et al.  Carbon Nanotube Single-Electron Transistors at Room Temperature , 2001, Science.

[246]  Konstantin K. Likharev,et al.  Single‐electron transistor logic , 1996 .

[247]  E. K. Track,et al.  Superconductor ICs: the 100-GHz second generation , 2000 .

[248]  L. Garey Cortex: Statistics and Geometry of Neuronal Connectivity, 2nd edn. By V. BRAITENBERG and A. SCHÜZ. (Pp. xiii+249; 90 figures; ISBN 3 540 63816 4). Berlin: Springer. 1998. , 1999 .

[249]  Yasunobu Nakamura,et al.  Metallic resistively coupled single-electron transistor , 1999 .

[250]  M. Porto,et al.  Pure-carbon ring transistor: Role of topology and structure , 2002, cond-mat/0206171.

[251]  K. Onishi,et al.  Electrical characteristics of highly reliable ultrathin hafnium oxide gate dielectric , 2000, IEEE Electron Device Letters.

[252]  J. Fossum,et al.  Extraordinarily high drive currents in asymmetrical double-gate MOSFETs , 2000 .

[253]  J. Gilman,et al.  Nanotechnology , 2001 .

[254]  Naoki Yokoyama,et al.  Room temperature operation of Si single-electron memory with self-aligned floating dot gate , 1997 .

[255]  Herbert Shea,et al.  Single- and multi-wall carbon nanotube field-effect transistors , 1998 .

[256]  Michel Devoret,et al.  Frequency-locked turnstile device for single electrons , 1990 .

[257]  Zhenan Bao,et al.  Conductance of small molecular junctions. , 2002, Physical review letters.

[258]  V. Mountcastle Perceptual Neuroscience: The Cerebral Cortex , 1998 .

[259]  S. Datta,et al.  Simulating quantum transport in nanoscale transistors: Real versus mode-space approaches , 2002 .