The stability of small helical gold nanorods: A relativistic density functional study

Multistrand 7‐1 helical Au24, Au32, and Au40 structures with three, four, and five gold atoms in the central strand and 21, 28, and 35 gold atoms in the coaxial tube are investigated using relativistic density functional theory. We demonstrate that these helical gold nanorods are stable structures with a rather large HOMO–LUMO gap, a large binding energy per atom, a very large vertical dissociation energy, and an extremely large electron affinity. On the basis of the atomic charges and the nature of the frontier orbitals, they are also expected to have strong selective reactivity toward electrophiles and nucleophiles. Furthermore, we show that these helical Aun structures and, in particular, the helical Au40 structure are competitive energetically and chemically with respect to alternate cage and compact Aun structures. We consider two fragmentations of the helical Au40 structure and perform a density of states analysis to examine both charge transfer and electronic polarization. © 2011 Wiley Periodicals, Inc. J Comput Chem, 2012

[1]  S. Bulusu,et al.  Structural Transitions from Pyramidal to Fused Planar to Tubular to Core/Shell Compact in Gold Clusters: Aun- (n = 21−25) , 2007 .

[2]  P. Schwerdtfeger,et al.  Relativistic effects in molecules: pseudopotential calculations for TIH+, TIH and TIH3 , 1987 .

[3]  Planar and cagelike structures of gold clusters: Density-functional pseudopotential calculations , 2006, cond-mat/0606189.

[4]  P. Schwerdtfeger Relativistic effects in gold chemistry. 2. The stability of complex halides of gold(III) , 1989 .

[5]  Stiff Monatomic Gold Wires with a Spinning Zigzag Geometry , 1999, cond-mat/9905225.

[6]  W. M. Haynes CRC Handbook of Chemistry and Physics , 1990 .

[7]  Kwang S. Kim,et al.  Spatial structure of Au8: Importance of basis set completeness and geometry relaxation. , 2006, The journal of physical chemistry. B.

[8]  Peter Schwerdtfeger,et al.  A systematic search for minimum structures of small gold clusters Au(n) (n=2-20) and their electronic properties. , 2009, The Journal of chemical physics.

[9]  Uzi Landman,et al.  Structural evolution of Au nanoclusters: From planar to cage to tubular motifs , 2006 .

[10]  Xiao Cheng Zeng,et al.  Au42: an alternative icosahedral golden fullerene cage. , 2005, Journal of the American Chemical Society.

[11]  Edoardo Aprà,et al.  Density-functional global optimization of gold nanoclusters , 2006 .

[12]  Jinlan Wang,et al.  Hollow cages versus space-filling structures for medium-sized gold clusters: the spherical aromaticity of the Au50 cage. , 2005, The journal of physical chemistry. A.

[13]  B. Hammer,et al.  2D-3D transition for cationic and anionic gold clusters: a kinetic energy density functional study. , 2009, Journal of the American Chemical Society.

[14]  G. Herzberg Molecular Spectra and Molecular Structure IV. Constants of Diatomic Molecules , 1939 .

[15]  Pekka Pyykkö,et al.  Relativistic effects in structural chemistry , 1988 .

[16]  M. Moseler,et al.  Density-functional based tight-binding study of small gold clusters , 2006 .

[17]  Jin-ming Dong,et al.  Bulk fragment and tubelike structures of Au N ( N = 2 − 26 ) , 2005, cond-mat/0504622.

[18]  Peter W. Stephens,et al.  Structural evolution of smaller gold nanocrystals: The truncated decahedral motif , 1997 .

[19]  V. Mujica,et al.  Density-functional study of magnetism in bare Au nanoclusters: Evidence of permanent size-dependent spin polarization without geometry relaxation , 2007 .

[20]  F. Remacle,et al.  The magic gold cluster Au20 , 2007 .

[21]  Matthias Brack,et al.  The physics of simple metal clusters: self-consistent jellium model and semiclassical approaches , 1993 .

[22]  Jun Li,et al.  Au20: A Tetrahedral Cluster , 2003, Science.

[23]  W. R. Wadt,et al.  Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals , 1985 .

[24]  Jijun Zhao,et al.  Density-functional study of Au n ( n = 2 – 2 0 ) clusters: Lowest-energy structures and electronic properties , 2002 .

[25]  Andreas Hirsch,et al.  Spherical Aromaticity in Ih Symmetrical Fullerenes: The 2(N+1)2 Rule. , 2000, Angewandte Chemie.

[26]  Sune R. Bahn,et al.  Mechanical properties and formation mechanisms of a wire of single gold atoms , 2001, cond-mat/0105277.

[27]  P. Schwerdtfeger Relativistic and electron-correlation contributions in atomic and molecular properties: benchmark calculations on Au and Au2 , 1991 .

[28]  Xiaofeng Zhang,et al.  Sub-two nanometer single crystal Au nanowires. , 2008, Nano letters.

[29]  Billy D. Todd,et al.  Surface and bulk properties of metals modelled with Sutton-Chen potentials , 1993 .

[30]  J. Perdew,et al.  Fourteen Easy Lessons in Density Functional Theory , 2010 .

[31]  P. Schwerdtfeger,et al.  Relativistic effects in gold chemistry. VI. Coupled cluster calculations for the isoelectronic series AuPt-, Au2, and AuHg+ , 1999 .

[32]  Hannu Häkkinen,et al.  Bonding in Cu, Ag, and Au clusters: relativistic effects, trends, and surprises. , 2002, Physical review letters.

[33]  A. D. Corso,et al.  String tension and stability of magic tip-suspended nanowires. , 2001, Science.

[34]  Peter Schwerdtfeger,et al.  Dependence of relativistic effects on electronic configuration in the neutral atoms of d‐ and f‐block elements , 2002, J. Comput. Chem..

[35]  Jerzy Cioslowski,et al.  A new population analysis based on atomic polar tensors , 1989 .

[36]  Takayanagi,et al.  Synthesis and characterization of helical multi-shell gold nanowires , 2000, Science.

[37]  A R Plummer,et al.  Introduction to Solid State Physics , 1967 .

[38]  Peter Schwerdtfeger,et al.  Electronic properties for small tin clusters Snn (n ≤ 20) from density functional theory and the convergence toward the solid state , 2009, J. Comput. Chem..

[39]  I. L. Garzón,et al.  Low-symmetry structures of Au32Z (Z = +1, 0, -1) clusters. , 2008, The journal of physical chemistry. A.

[40]  P. Schwerdtfeger,et al.  Relativistic effects in gold chemistry. V. Group 11 dipole polarizabilities and weak bonding in monocarbonyl compounds , 1994 .

[41]  W. D. de Heer,et al.  Magnetism from the Atom to the Bulk in Iron, Cobalt, and Nickel Clusters , 1994, Science.

[42]  Roy L. Johnston,et al.  Modelling gold clusters with an empirical many-body potential , 2000 .

[43]  Pekka Pyykkö,et al.  Icosahedral Au(72): a predicted chiral and spherically aromatic golden fullerene. , 2008, Chemical communications.

[44]  Mikael P. Johansson,et al.  2D-3D transition of gold cluster anions resolved , 2008 .

[45]  Chang Q. Sun,et al.  Local structure relaxation, quantum trap depression, and valence charge polarization induced by the shorter-and-stronger bonds between under-coordinated atoms in gold nanostructures. , 2010, Nanoscale.

[46]  Jinlan Wang,et al.  Static polarizabilities and optical absorption spectra of gold clusters ( Au n , n = 2 – 14 and 20) from first principles , 2007 .

[47]  Dolg,et al.  Anomalous high gold-metal bond stabilities: Relativistic configuration-interaction calculations for AuLa and AuLu. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[48]  M. Moseler,et al.  Symmetry and electronic structure of noble-metal nanoparticles and the role of relativity. , 2004, Physical review letters.

[49]  P. Schwerdtfeger,et al.  The accuracy of the pseudopotential approximation. I. An analysis of the spectroscopic constants for the electronic ground states of InCl and InCl3 using various three valence electron pseudopotentials for indium , 1995 .

[50]  O. Cheshnovsky,et al.  Auger recombination and charge-carrier thermalization in Hg - n -cluster photoelectron studies. , 2003, Physical review letters.

[51]  J. M. van Ruitenbeek,et al.  Formation and manipulation of a metallic wire of single gold atoms , 1998, Nature.

[52]  K. Burke,et al.  Accuracy of Electron Affinities of Atoms in Approximate Density Functional Theory , 2010 .

[53]  Pekka Pyykkö,et al.  Theoretical chemistry of gold. III. , 2008, Chemical Society reviews.

[54]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[55]  R. Johnston Evolving better nanoparticles: Genetic algorithms for optimising cluster geometries , 2003 .

[56]  Chang Q. Sun,et al.  Length, Strength, Extensibility, and Thermal Stability of a Au−Au Bond in the Gold Monatomic Chain , 2004 .

[57]  Jijun Zhao,et al.  Competition among fcc-like, double-layered flat, tubular cage, and close-packed structural motifs for medium-sized Au n (n = 21-28) clusters. , 2008, The journal of physical chemistry. A.

[58]  S. Bulusu,et al.  Gold-caged metal clusters with large HOMO-LUMO gap and high electron affinity. , 2005, Journal of the American Chemical Society.

[59]  Peter Schwerdtfeger,et al.  Convergence of the many-body expansion of interaction potentials: From van der Waals to covalent and metallic systems , 2007 .

[60]  W. C. Lineberger,et al.  Binding energies in atomic negative ions , 1975 .

[61]  H. Grönbeck,et al.  Comparison of the bonding in Au8 and Cu8 : A density functional theory study , 2005 .

[62]  S. Khanna,et al.  Formation of Al13I-: Evidence for the Superhalogen Character of Al13 , 2004, Science.

[63]  Charles M Lieber,et al.  Ultrathin Au nanowires and their transport properties. , 2008, Journal of the American Chemical Society.

[64]  Serge I. Gorelsky,et al.  Electronic structure and spectra of ruthenium diimine complexes by density functional theory and INDO/S. Comparison of the two methods , 2001 .

[65]  P. Schwerdtfeger Gold goes nano--from small clusters to low-dimensional assemblies. , 2003, Angewandte Chemie.

[66]  P. Schwerdtfeger,et al.  The accuracy of the pseudopotential approximation. III. A comparison between pseudopotential and all-electron methods for Au and AuH , 2000 .

[67]  Jian-Min Zuo,et al.  Coordination-dependent surface atomic contraction in nanocrystals revealed by coherent diffraction. , 2008, Nature materials.

[68]  R. C. Weast CRC Handbook of Chemistry and Physics , 1973 .

[69]  Xiao Cheng Zeng,et al.  Evidence of hollow golden cages. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[70]  M. Moseler,et al.  55-Atom clusters of silver and gold: Symmetry breaking by relativistic effects , 2006 .

[71]  Peter Schwerdtfeger,et al.  Relativistic effects in gold chemistry. I. Diatomic gold compounds , 1989 .

[72]  Jinlong Yang,et al.  Theoretical study of small two-dimensional gold clusters , 2003 .

[73]  G. Herzberg,et al.  Constants of diatomic molecules , 1979 .

[74]  B. von Issendorff,et al.  Metal to insulator transitions in clusters. , 2005, Annual review of physical chemistry.

[75]  Jinlan Wang,et al.  Dipole polarizabilities of medium-sized gold clusters , 2006 .

[76]  J. Soler,et al.  Trends in the structure and bonding of noble metal clusters , 2004 .

[77]  Jonathan Doye,et al.  Global minima for transition metal clusters described by Sutton–Chen potentials , 1997 .

[78]  J. Perdew,et al.  Density-functional approximation for the correlation energy of the inhomogeneous electron gas. , 1986, Physical review. B, Condensed matter.

[79]  Younan Xia,et al.  Ultrathin gold nanowires can be obtained by reducing polymeric strands of oleylamine-AuCl complexes formed via aurophilic interaction. , 2008, Journal of the American Chemical Society.

[80]  D. Sundholm,et al.  Exploring the stability of golden fullerenes , 2008 .

[81]  F. Baletto,et al.  Structural properties of nanoclusters: Energetic, thermodynamic, and kinetic effects , 2005 .

[82]  Masatake Haruta,et al.  Gold catalysts: towards sustainable chemistry. , 2007, Angewandte Chemie.

[83]  Li Xiao,et al.  Structural study of gold clusters. , 2006, The Journal of chemical physics.

[84]  E. Tosatti,et al.  Weird Gold Nanowires , 2000, Science.

[85]  D. Astruc,et al.  Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. , 2004, Chemical reviews.

[86]  X. Gu,et al.  AuN clusters (N=32,33,34,35): Cagelike structures of pure metal atoms , 2004 .

[87]  F. Weigend,et al.  Quantum chemical treatments of metal clusters , 2010, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[88]  David Thompson,et al.  Catalysis By Gold , 1999 .

[89]  Pekka Pyykkö,et al.  Theoretical chemistry of gold. , 2004, Angewandte Chemie.

[90]  G. Bishea,et al.  Spectroscopic studies of jet‐cooled AgAu and Au2 , 1991 .

[91]  P. Schwerdtfeger Relativistic effects in properties of gold , 2002 .

[92]  Peter Schwerdtfeger,et al.  Properties of small- to medium-sized mercury clusters from a combined ab initio, density-functional, and simulated-annealing study. , 2002, Physical review letters.

[93]  P. Schwerdtfeger,et al.  Structure and electric properties of Sn(N) clusters (N = 6-20) from combined electric deflection experiments and quantum theoretical studies. , 2008, The journal of physical chemistry. A.

[94]  Peter Schwerdtfeger,et al.  Relativistic effects in gold chemistry. 4. Gold(III) and gold(V) compounds , 1992 .

[95]  A. Sutton,et al.  Long-range Finnis–Sinclair potentials , 1990 .

[96]  Peter Schwerdtfeger,et al.  The accuracy of the pseudopotential approximation. II. A comparison of various core sizes for indium pseudopotentials in calculations for spectroscopic constants of InH, InF, and InCl , 1996 .

[97]  Pekka Pyykkö,et al.  Theoretical chemistry of gold. II , 2005 .

[98]  Yukihito Kondo,et al.  Quantized conductance through individual rows of suspended gold atoms , 1998, Nature.

[99]  Michael Dolg,et al.  Relativistic energy‐consistent pseudopotentials—Recent developments , 2002, J. Comput. Chem..

[100]  Jun Yu Li,et al.  Au34-: A Fluxional Core−Shell Cluster , 2007 .