Purification of chaperonins from thermophilic bacteria and archaea

[1]  F. Hartl,et al.  Protein folding in the central cavity of the GroEL–GroES chaperonin complex , 1996, Nature.

[2]  R. Josephs,et al.  Conformational Cycle of the Archaeosome, a TCP1-like Chaperonin from Sulfolobus shibatae* , 1995, The Journal of Biological Chemistry.

[3]  W. Baumeister,et al.  Expression of an archaeal chaperonin in E. coli: formation of homo‐ (α, β) and hetero‐oligomeric (α + β) thermosome complexes , 1995 .

[4]  R. Overbeek,et al.  The 60 kDa heat shock proteins in the hyperthermophilic archaeon Sulfolobus shibatae. , 1995, Journal of molecular biology.

[5]  R. Russell,et al.  Citrate synthase from the hyperthermophilic Archaeon, Pyrococcus furiosus. , 1995, Protein engineering.

[6]  M. Adams,et al.  Two-dimensional gel electrophoresis mapping of proteins isolated from the hyperthermophile Pyrococcus furiosus , 1995 .

[7]  Zbyszek Otwinowski,et al.  The crystal structure of the bacterial chaperonln GroEL at 2.8 Å , 1994, Nature.

[8]  L. Cerchia,et al.  The chaperonin from the archaeon Sulfolobus solfataricus promotes correct refolding and prevents thermal denaturation in vitro , 1994, Protein science : a publication of the Protein Society.

[9]  S. Knapp,et al.  The molecular chaperonin TF55 from the Thermophilic archaeon Sulfolobus solfataricus. A biochemical and structural characterization. , 1994, Journal of molecular biology.

[10]  Yechezkel Kashi,et al.  GroEL-mediated protein folding proceeds by multiple rounds of binding and release of nonnative forms , 1994, Cell.

[11]  C. Anfinsen,et al.  Alpha-amylase from the hyperthermophilic archaebacterium Pyrococcus furiosus. Cloning and sequencing of the gene and expression in Escherichia coli. , 1993, The Journal of biological chemistry.

[12]  M. Adams,et al.  Characterization of a novel tungsten-containing formaldehyde ferredoxin oxidoreductase from the hyperthermophilic archaeon, Thermococcus litoralis. A role for tungsten in peptide catabolism. , 1993, The Journal of biological chemistry.

[13]  K. Willison,et al.  Protein folding in the cell: functions of two families of molecular chaperone, hsp 60 and TF55-TCP1. , 1993 .

[14]  H. Taguchi,et al.  A chaperonin from a thermophilic bacterium, Thermus thermophilus, that controls refoldings of several thermophilic enzymes. , 1991, The Journal of biological chemistry.

[15]  W. Baumeister,et al.  A novel ATPase complex selectively accumulated upon heat shock is a major cellular component of thermophilic archaebacteria. , 1991, The EMBO journal.

[16]  D. Engelke,et al.  Purification of Thermus aquaticus DNA polymerase expressed in Escherichia coli. , 1990, Analytical biochemistry.

[17]  P. V. von Hippel,et al.  Calculation of protein extinction coefficients from amino acid sequence data. , 1989, Analytical biochemistry.

[18]  C. Georgopoulos,et al.  The groES and groEL heat shock gene products of Escherichia coli are essential for bacterial growth at all temperatures , 1989, Journal of bacteriology.

[19]  Roger W. Hendrix,et al.  Homologous plant and bacterial proteins chaperone oligomeric protein assembly , 1988, Nature.

[20]  A. Joachimiak,et al.  Solution structures of GroEL and its complex with rhodanese from small-angle neutron scattering. , 1996, Structure.

[21]  P. Forterre,et al.  PCR-mediated cloning and sequencing of the gene encoding glutamate dehydrogenase from the archaeon Sulfolobus shibatae: identification of putative amino-acid signatures for extremophilic adaptation. , 1994, Gene.