Physical properties of KxNi2−ySe2 single crystals

We have synthesized K0.95(1)Ni1.86(2)Se2 single crystals. The single crystals contain K and Ni deficiencies not observed in KNi2Se2 polycrystals. Unlike KNi2Se2 polycrystals, the superconductivity is absent in single crystals. The detailed physical property study indicates that the K0.95Ni1.86Se2 single crystals exhibit heavy-fermion-like characteristics. The transition to a heavy fermion state below T ∼ 30 K results in an enhancement of the electron-like carrier density whereas the magnetic susceptibility shows little anisotropy and suggests the presence of both itinerant and localized Ni orbitals.

[1]  Weihua Wang,et al.  Electronic structure of the new Ni-based superconductor KNi2Se2 , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[2]  J. Neilson,et al.  Mixed-valence-driven heavy-fermion behavior and superconductivity in KNi2Se2 , 2012, 1208.3299.

[3]  J. Neilson,et al.  Bonding, ion mobility, and rate-limiting steps in deintercalation reactions with ThCr2Si2-type KNi2Se2. , 2012, Journal of the American Chemical Society.

[4]  M. Tokumoto,et al.  Synthesis and Magnetic Properties of NiSe, NiTe, CoSe, and CoTe , 2012 .

[5]  C. Chao,et al.  Electronic Structure of KFe2Se2 from First-Principles Calculations , 2011 .

[6]  G. Kotliar,et al.  Kinetic frustration and the nature of the magnetic and paramagnetic states in iron pnictides and iron chalcogenides. , 2011, Nature materials.

[7]  M. Fang,et al.  Fe-based superconductivity with Tc=31 K bordering an antiferromagnetic insulator in (Tl,K) FexSe2 , 2011 .

[8]  M. Zhang,et al.  Coexistence of superconductivity and antiferromagnetism in single crystals A0.8Fe2−ySe2 (A=K, Rb, Cs, Tl/K and Tl/Rb): Evidence from magnetization and resistivity , 2011, 1102.2783.

[9]  H. Lei,et al.  Anisotropy in transport and magnetic properties of K0.64Fe1.44Se2 , 2011, 1102.1010.

[10]  H. Wen,et al.  Nodeless superconductivity of single-crystalline KxFe2-ySe2 revealed by the low-temperature specific heat , 2011, 1101.5117.

[11]  Xiyu Zhu,et al.  Transport properties and anisotropy of Rb1-xFe2-ySe2 single crystals , 2010, 1012.5637.

[12]  M. Zhang,et al.  Superconductivity at 32 K in single-crystalline Rb x Fe 2 − y Se 2 , 2010, 1012.5525.

[13]  A. Amato,et al.  Synthesis and crystal growth of Cs0.8(FeSe0.98)2: a new iron-based superconductor with Tc = 27 K , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[14]  Gang Wang,et al.  Superconductivity in the iron selenide K x Fe 2 Se 2 (0≤x≤1.0) , 2010 .

[15]  R. Cava,et al.  Magnetic and structural properties of Ca(Fe1-xCox) 2P2 and Ca(Ni1-xCox) 2P2 , 2010 .

[16]  E. Bauer,et al.  Ni2X2 (X = pnictide, chalcogenide, or B) based superconductors , 2009, 0902.4423.

[17]  E. Bauer,et al.  Superconductivity and the effects of pressure and structure in single-crystalline SrNi 2 P 2 , 2009, 0902.0663.

[18]  Y. Takano,et al.  Superconductivity in S-substituted FeTe , 2008, 0811.0711.

[19]  F. Hsu,et al.  Tellurium substitution effect on superconductivity of the α-phase iron selenide , 2008, 0808.0474.

[20]  A. L. Ivanovskii,et al.  New superconductor with a layered crystal structure: Nickel oxybismuthide LaO1−δNiBi , 2008 .

[21]  F. Hsu,et al.  Superconductivity in the PbO-type structure α-FeSe , 2008, Proceedings of the National Academy of Sciences.

[22]  Xiyu Zhu,et al.  Hall effect and magnetoresistance in single crystals of NdFeAsO(1-x)F(x) (x=0 and 0.18) , 2008, 0806.1668.

[23]  T. Kamiya,et al.  Nickel-based layered superconductor, LaNiOAs , 2008, 0805.4340.

[24]  T. Kamiya,et al.  Nickel-based phosphide superconductor with infinite-layer structure, BaNi2P2 , 2008, 0805.4305.

[25]  J. Howe,et al.  Electronic correlations in the superconductor La Fe As O 0.89 F 0.11 with low carrier density , 2008 .

[26]  Hideo Hosono,et al.  Iron-based layered superconductor La[O(1-x)F(x)]FeAs (x = 0.05-0.12) with T(c) = 26 K. , 2008, Journal of the American Chemical Society.

[27]  Zi-kui Liu,et al.  Fully band-resolved scattering rate in MgB2 revealed by the nonlinear hall effect and magnetoresistance measurements. , 2008, Physical review letters.

[28]  T. Kamiya,et al.  Nickel-based oxyphosphide superconductor with a layered crystal structure, LaNiOP. , 2007, Inorganic chemistry.

[29]  K. Kosuge,et al.  Deviation from the Kadowaki–Woods relation in Yb-based intermediate-valence systems , 2003, cond-mat/0302325.

[30]  Brian H. Toby,et al.  EXPGUI, a graphical user interface for GSAS , 2001 .

[31]  Wolf,et al.  Thermoelectric power of YBa2Cu3O7- delta : Phonon drag and multiband conduction. , 1991, Physical review letters.

[32]  M. Croft,et al.  Magnetic ordering in TlCo2-xNixSe2 with the ThCr2Si2 structure , 1989 .

[33]  Delong,et al.  Low-temperature magnetization study of U6X (X=Mn,Fe,Co,Ni) compounds. , 1985, Physical review. B, Condensed matter.

[34]  R. Barnard,et al.  Thermoelectricity in Metals and Alloys , 1974 .

[35]  Y. Maeno,et al.  Normal state, superconductivity and quasiparticle Fermi surface of the strongly correlated oxide Sr2RuO4 , 1999 .

[36]  A. P. Hammersley,et al.  Two-dimensional detector software: From real detector to idealised image or two-theta scan , 1996 .