Some tight lower bounds for Turán problems via constructions of multi-hypergraphs

Recently, several Turan type problems were solved by the powerful random algebraic method. In this paper, we use this tool to construct various multi-hypergraphs to obtain some tight lower bounds and determine the dependence on some specified large constant for different Turan problems. We investigate three important objects including complete $r$-partite $r$-uniform hypergraphs, complete bipartite hypergraphs and Berge theta hypergraphs. More specifically, for complete $r$-partite $r$-uniform hypergraphs, we show that if $s_{r}$ is sufficiently larger than $s_{1},s_{2},\ldots,s_{r-1},$ then $$ \text{ex}_{r}(n,K_{s_{1},s_{2},\ldots,s_{r}}^{(r)})=\Theta(s_{r}^{\frac{1}{s_{1}s_{2}\cdots s_{r-1}}}n^{r-\frac{1}{s_{1}s_{2}\cdots s_{r-1}}}).$$ For complete bipartite hypergraphs, we prove that if $s$ is sufficiently larger than $t,$ we have $$ \text{ex}_{r}(n,K_{s,t}^{(r)})=\Theta(s^{\frac{1}{t}}n^{r-\frac{1}{t}}).$$ In particular, our results imply that the famous Kovari-Sos-Turan's upper bound $\text{ex}(n,K_{s,t})=O(t^{\frac{1}{s}}n^{2-\frac{1}{s}})$ is tight when $t$ is large.

[1]  Boris Bukh,et al.  Turán numbers for Ks,t-free graphs: Topological obstructions and algebraic constructions , 2013 .

[2]  P. Erdös ON SEQUENCES OF INTEGERS NO ONE OF WHICH DIVIDES THE PRODUCT OF TWO OTHERS AND ON SOME RELATED PROBLEMS , 2004 .

[3]  Jie Ma,et al.  Cycles of given lengths in hypergraphs , 2016, J. Comb. Theory, Ser. B.

[4]  Noga Alon,et al.  Norm-Graphs: Variations and Applications , 1999, J. Comb. Theory, Ser. B.

[5]  Dániel Gerbner,et al.  Extremal Results for Berge Hypergraphs , 2015, SIAM J. Discret. Math..

[6]  M. Simonovits,et al.  Cycles of even length in graphs , 1974 .

[7]  F. Lazebnik,et al.  A new series of dense graphs of high girth , 1995, math/9501231.

[8]  Dhruv Mubayi,et al.  Some Exact Results and New Asymptotics for Hypergraph Turán Numbers , 2002, Combinatorics, Probability and Computing.

[9]  Jacques Verstraëte,et al.  A hypergraph extension of the bipartite Turán problem , 2004, J. Comb. Theory, Ser. A.

[10]  Jacques Verstraëte Extremal problems for cycles in graphs , 2016 .

[11]  W. G. Brown On Graphs that do not Contain a Thomsen Graph , 1966, Canadian Mathematical Bulletin.

[12]  David Conlon,et al.  Graphs with few paths of prescribed length between any two vertices , 2014, Bulletin of the London Mathematical Society.

[13]  P. Erdös,et al.  On the structure of linear graphs , 1946 .

[14]  D'aniel Gerbner,et al.  Asymptotics for the Turán number of Berge-K2, t , 2017, J. Comb. Theory, Ser. B.

[15]  Boris Bukh,et al.  A Bound on the Number of Edges in Graphs Without an Even Cycle , 2014, Combinatorics, Probability and Computing.

[16]  Jie Ma,et al.  Some extremal results on complete degenerate hypergraphs , 2016, J. Comb. Theory, Ser. A.

[17]  Miklós Simonovits,et al.  On a class of degenerate extremal graph problems , 1983, Comb..

[18]  Ervin Györi,et al.  Hypergraphs with No Cycle of a Given Length , 2012, Combinatorics, Probability and Computing.

[19]  Lajos Rónyai,et al.  Norm-graphs and bipartite turán numbers , 1996, Comb..

[20]  Jacques Verstraëte,et al.  Graphs without theta subgraphs , 2019, J. Comb. Theory, Ser. B.

[21]  A. Rényii,et al.  ON A PROBLEM OF GRAPH THEORY , 1966 .

[22]  Béla Bollobás,et al.  Pentagons vs. triangles , 2008, Discret. Math..

[23]  Jason Williford,et al.  Graphs from Generalized Kac-Moody Algebras , 2012, SIAM J. Discret. Math..

[25]  Máté Vizer,et al.  Asymptotics for the Tur\'an number of Berge-$K_{2,t}$ , 2017 .

[26]  V. Sós,et al.  On a problem of K. Zarankiewicz , 1954 .

[27]  Rephael Wenger,et al.  Extremal graphs with no C4's, C6's, or C10's , 1991, J. Comb. Theory, Ser. B.

[28]  Cory Palmer,et al.  General lemmas for Berge-Turán hypergraph problems , 2018, Eur. J. Comb..

[29]  Abhishek Methuku,et al.  Uniformity thresholds for the asymptotic size of extremal Berge-F-free hypergraphs , 2017, Electron. Notes Discret. Math..

[30]  David Conlon,et al.  Rational exponents in extremal graph theory , 2015, 1506.06406.

[31]  Ervin Györi,et al.  Triangle-Free Hypergraphs , 2006, Combinatorics, Probability and Computing.

[32]  B. Bukh Random algebraic construction of extremal graphs , 2014, 1409.3856.

[33]  Michael Tait,et al.  Tur\'an number of theta graphs , 2018 .

[34]  Michael Tait,et al.  Hypergraphs with Few Berge Paths of Fixed Length between Vertices , 2018, SIAM J. Discret. Math..