Nanoscale topography and spatial light modulator characterization using wide-field quantitative phase imaging.

We demonstrate an optical technique for large field of view quantitative phase imaging of reflective samples. It relies on a common-path interferometric design, which ensures high stability without the need for active stabilization. The technique provides single-shot, full-field and robust measurement of nanoscale topography of large samples. Further, the inherent stability allows reliable measurement of the temporally varying phase retardation of the liquid crystal cells, and thus enables real-time characterization of spatial light modulators. The technique's application potential is validated through experimental results.

[1]  R. Cohn,et al.  Phase calibration of spatially nonuniform spatial light modulators. , 2004, Applied optics.

[2]  Amir Arbabi,et al.  Optically monitoring and controlling nanoscale topography during semiconductor etching , 2012, Light: Science & Applications.

[3]  Lukas Novotny,et al.  Programmable vector point-spread function engineering. , 2006, Optics express.

[4]  Dong Li,et al.  Phase calibration of spatial light modulators by heterodyne interferometry , 2010, SPIE/COS Photonics Asia.

[5]  D. Whitehouse,et al.  REVIEW ARTICLE: Surface metrology , 1997 .

[6]  J. Bennett,et al.  Stylus profiling instrument for measuring statistical properties of smooth optical surfaces. , 1981, Applied optics.

[7]  Daniel M. Sykora,et al.  Dynamic measurements using a Fizeau interferometer , 2011, Optical Metrology.

[8]  Q. Mu,et al.  Phase-only liquid crystal spatial light modulator for wavefront correction with high precision. , 2004, Optics express.

[9]  Amir Arbabi,et al.  Detecting 20 nm wide defects in large area nanopatterns using optical interferometric microscopy. , 2013, Nano letters.

[10]  Elad Arbel,et al.  Quantitative reflection phase mesoscopy by remote coherence tuning of phase-shift interference patterns , 2015, Scientific Reports.

[11]  Peter J. de Groot,et al.  Instantaneous Interferometry: Another View , 2010 .

[12]  James C Wyant,et al.  Computerized interferometric surface measurements [Invited]. , 2013, Applied optics.

[13]  Joseph H. Abeles,et al.  Direct measurement of nanoscale sidewall roughness of optical waveguides using an atomic force microscope , 2003 .

[14]  A Finizio,et al.  Phase map retrieval in digital holography: avoiding the undersampling effect by a lateral shear approach. , 2007, Optics letters.

[15]  Gabriel Popescu,et al.  Hilbert phase microscopy for investigating fast dynamics in transparent systems. , 2005, Optics letters.

[16]  Johannes Courtial,et al.  3D interferometric optical tweezers using a single spatial light modulator. , 2005, Optics express.

[17]  G. M. Morris,et al.  Characteristics of a 128 x 128 liquid-crystal spatial light modulator for wave-front generation. , 1998, Optics letters.

[18]  Leslie L. Deck Environmentally friendly interferometry , 2004, SPIE Optics + Photonics.

[19]  M. S. Millán,et al.  Dynamic calibration for improving the speed of a parallel-aligned liquid-crystal-on-silicon display. , 2009, Applied optics.

[20]  R. Dasari,et al.  Diffraction phase microscopy for quantifying cell structure and dynamics. , 2006, Optics letters.

[21]  Tan H. Nguyen,et al.  Diffraction phase microscopy: principles and applications in materials and life sciences , 2014 .

[22]  Jian Zhang,et al.  Evaluation of phase-only liquid crystal spatial light modulator for phase modulation performance using a Twyman–Green interferometer , 2007 .

[23]  J. Castle,et al.  Characterization of surface topography by SEM and SFM: problems and solutions , 1997 .

[24]  L. Deck,et al.  High-speed noncontact profiler based on scanning white-light interferometry. , 1994, Applied optics.

[25]  J. M. Huntley,et al.  Temporal phase-unwrapping algorithm for automated interferogram analysis. , 1993, Applied optics.